Электронная библиотека Грамотей

:: ЮРИЙ ЕЛИСЕЕВ :: ОБЩАЯ ГИГИЕНА: КОНСПЕКТ ЛЕКЦИЙ :: Электронная библиотека Грамотей

Annotation

   Конспект лекций по общей гигиене представлен в соответствие с современными стандартами. В данном пособии четко даны основные понятия, благодаря которым студент сможет сформулировать ответ, а также за короткий срок переработать и усвоить важную часть информации. Не являясь альтернативой это пособие поможет успешно сдать экзамен по общей гигиене. Курс лекций будет полезен не только студентам, но и преподавателям.


Общая гигиена: Конспект лекций

   Коллектив авторов:
   Елисеев Ю. Ю., д.м.н., профессор, академик РАЕ,
   Луцевич И. Н., д.м.н.,
   Жуков А. В., к.м.н.,
   Клещина Ю. В.,
   Данилов А. Н., главный санитарный врач Саратовской области

   Публикуется с разрешения правообладателя: ЛА «Научная книга»

ЛЕКЦИЯ № 1. Окружающая среда и здоровье

История развития гигиенической науки

   Гигиенические знания, основанные на жизненных наблюдениях, зародились в глубокой древности. Первые гигиенические трактаты, дошедшие до нас («О здоровом образе жизни», «О воде, воздухе и местностях»), принадлежат перу великого врача Древней Греции Гиппократу (460—377 гг. до н. э.). Первые городские водопроводы, больницы были построены в Древнем Риме.
   До сих пор не только известен, но и представляет определенный научный интерес «Трактат по гигиене (устранение всякого повреждения человеческого тела путем исправления различных ошибок в режиме)», написанный великим арабо-мусульманским ученым, родившимся в Средней Азии Авиценной Абу Али ибн Сина (980—1037). В трактате излагаются важные вопросы гигиены, предлагаются способы и средства лечения и профилактики заболеваний, вызванных нарушением режима сна, питания и т. п.
   Однако гигиеническая наука развивалась не только на основе эмпирических наблюдений, но и, безусловно, с учетом новых экспериментальных данных. Здесь необходимо вспомнить гигиенические руководства, написанные французом М. Леви (1844 г.) и английским ученым-медиком Э. Парксом. Первую гигиеническую кафедру при медицинском факультете Мюнхенского университета в 1865 г. организовал Макс Петтенкофер (1818—1901). Он не только исследовал факторы окружающей среды (воду, воздух, почву, пищу), но и создал первую школу гигиенистов.
   Из Древней (Киевской, Новгородской) Руси к нам также приходят эмпирические знания о гигиене. Достаточно вспомнить известный трактат о быте русской семьи – «Домострой», где изложены основы правильного хранения продуктов, уделено внимание соблюдению чистоты и опрятности.
   Много для охраны здоровья населения и предупреждения распространения болезней в России сделал Петр I, издавший ряд указов о санитарном состоянии городов, об обязательном извещении о случаях заразных болезней и т. п.
   На особое значение профилактических мероприятий в предупреждении высокой заболеваемости указывали многие русские врачи: Н. И. Пирогов, С. П. Боткин, Н. Г. Захарьин, М. Я. Мудров.
   Н. И. Пирогов писал: «Я верю в гигиену. Вот где заключается истинный прогресс нашей науки. Будущее принадлежит медицине предохранительной». В актовой речи, произнесенной в 1873 г., другой известный русский клиницист, профессор Г. Н. Захарьин говорил: «Чем зрелее практический врач, тем более понимает он могущество гигиены и относительную слабость лечения, терапии... Самые успехи терапии возможны лишь при условии соблюдения гигиены. Победоносно спорить с недугами масс может лишь гигиена. Мы считаем гигиену одним из важнейших, если не важнейшим предметом деятельности практического врача».
   В России гигиена как курс судной науки (судебной медицины) начинает преподаваться в Медико-хирургической академии (СПб) прямо с ее открытия, т. е. с 1798 г. Сначала курс называется «Медицинская полиция», а с 1835 г. «Медицинская полиция и гигиена». Самостоятельная кафедра гигиены в академии и первая в России открывается в 1871 г. под руководством приват-доцента Алексея Петровича Доброславина (1842—1889). А. П. Доброславин организовал при кафедре экспериментальную лабораторию, создал первую русскую школу гигиенистов, им были написаны первые русские учебники по гигиене.
   Московская школа гигиенистов была создана Федором Федоровичем Эрисманом (1842—1915). В 1881 г. Ф. Ф. Эрисман был избран приват-доцентом кафедры гигиены медицинского факультета Московского университета. Он много работал в области гигиены детей и подростков (до сих пор известна универсальная парта Эрисмана), социальной гигиены, заложил основы изучения влияния средовых факторов на здоровье подрастающего поколения, доказал, что физическое развитие может выступать в качестве показателя санитарного благополучия детского населения.
   В советский период для развития отечественной гигиены много сделали такие ученые, как профессора Григорий Витальевич Хлопин, Федор Григорьевич Кротков, Алексей Николаевич Сысин, Алексей Алексеевич Минх, Геннадий Иванович Сидоренко и многие другие.

Предмет, содержание гигиены, место и значение гигиены в деятельности практического врача

   Филологическое происхождение гигиены связывается по греческой мифологии с богиней здоровья (Hygieinos) – дочерью Эскулапа. Гигиена – богиня здоровья – символ здоровья.
   Гигиена – медицинская, профилактическая дисциплина. Она изучает закономерности воздействия на организм факторов окружающей среды с целью предупреждения заболеваний и улучшения самой окружающей среды. Факторы окружающей среды изучают и другие дисциплины. Особенность гигиены состоит в том, что она изучает влияние факторов внешней среды на здоровье человека.
   Задача гигиены как науки состоит в том, чтобы путем проведения гигиенических мероприятий ослабить действие факторов отрицательного характера и усилить действие положительных факторов. В частности, в настоящее время установлено, что фтор в составе питьевой воды оказывает определенное влияние на развитие и формирование зубов.
   Например, концентрации фтора в воде менее 0,7 мг/л и особенно на уровне 0,5 мг/л приводят к развитию кариеса. Вода Волги, широко используемая для водопотребления в городах Поволжья, содержит фтор на уровне 0,2 мг/л. Такой уровень фтора в питьевых водах приводит к массовому развитию кариеса. 80 %, а в отдельных пунктах – 90 % населения Поволжских городов страдает кариесом. Наряду с таким известным отрицательным фактором недостатка фтора в питьевых водах избыточная его концентрация (выше 1,5 мг/л) приводит к развитию флюороза. Флюороз – это заболевание, развитие которого связано с действием фтора на организм как протоплазматического яда. В частности, высокая концентрация фтора приводит к изменениям в формировании и развитии зубов. Наряду со скелетной формой существует так называемая дентальная форма флюороза. Оптимальный уровень фтора, обеспечивающий профилактику кариеса и исключающий его токсическое действие, находится в пределах от 0,7 до 1,5 мг/л. Такой диапазон доз фтора в питьевой воде устанавливается с учетом региональных особенностей и некоторых других аспектов. Таким образом, отличительной особенностью гигиены является нормирование факторов, что мы с вами рассмотрели на примере фтора.
   Предметами гигиены являются окружающая среда и здоровье. Что они из себя представляют?
   Окружающая среда – это совокупность элементов физического, химического, биологического, психологического, экономического, культурно-этнического характера, которые составляют единую, непрерывно изменяющуюся экологическую систему (экосистему).
   Определение здоровья наиболее адекватно современным условиям дается экспертами Всемирной организации здравоохранения. Здоровье – это состояние полного физического, душевного и социального благополучия, а не только отсутствие болезней или физических дефектов.
   За минувший XX в. основные средства, вкладываемые в здравоохранение, шли в основном на решение уже возникших проблем, а не на то, чтобы предотвратить их появление. Упор делали на излечение, или, во всяком случае, на уменьшение плохого здоровья, на терапевтическую помощь, а не на укрепление здоровья и предупреждение болезней. Должна быть проведена переориентация приоритетов. Большее внимание должно уделяться профилактическому направлению развития медицины.
   Общеизвестно, что гигиена возникла из потребностей клинической медицины. За развитие гигиены высказывались прежде всего представители клинической медицины, такие видные ученые, как М. Я. Мудров, Н. Г. Захарьин, Н. И. Пирогов, С. П. Боткин. Общеизвестным является высказывание Захарьина: «Чем зрелее практический врач, тем более он понимает могущество гигиены и относительную слабость лечения – терапии». Сами успехи терапии возможны лишь при условии соблюдения гигиены. Задача гигиены состоит в том, чтобы сделать развитие человека наиболее совершенным, жизнь – сильной, а смерть – наиболее отдаленной.
   Знание гигиены необходимо в практической деятельности врачей различного профиля: лечебного, педиатрического и стоматологического.
   Общеизвестно, что на развитие различных патологий оказывают влияние факторы окружающей среды. Если не учитывать эти факторы, эффективность проводимого лечения снижается. Например, в области патологии заболеваний ротовой полости известно влияние профессионального фактора.
   Работа с теми или иными химическими веществами может усилить развитие патологического процесса в полости рта, кариеса, других заболеваний. На развитие кариеса оказывает значительное влияние такой фактор, как характер питания (алиментарный). Общеизвестно, что кариес чаще развивается у тех, кто потребляет большее количество рафинированных углеводов. В настоящее время в медицине известно значительное количество заболеваний, имеющих в генезе экологический фактор. На течение целого ряда заболеваний оказывают влияние жилищные условия, потребление воды того или иного минерального состава. Условия труда способствуют развитию тех или иных заболеваний, могут усугубить течение сердечно-сосудистой патологии, оказать негативное воздействие на развитие патологии органов дыхания. Нужно сказать, что есть заболевания, которые обусловлены воздействием на организм профессионального фактора. Эти болезни так и названы: профессиональные заболевания.
   Врачу необходимы знания воздействия того или иного фактора на организм: алиментарного фактора, характера воды, ее состава, качества. При проведении того или иного лечения с использованием фармакологических препаратов следует учитывать характер питания, так как оно может ослабить или усилить действие препарата (так же, как и питьевая вода может усилить действие или, наоборот, ослабить эффективность проводимого медикаментозного лечения).
   Развитие гигиены идет по двум направлениям. С одной стороны, отмечается процесс ее так называемой дифференциации. Процесс дифференциации связывается с выделением из общей гигиены таких ее самостоятельных отраслей, как социальная гигиена, коммунальная гигиена, гигиена питания, гигиена труда, гигиена детей и подростков, радиационная гигиена, военная гигиена, гигиена и токсикология полимерных материалов, космическая гигиена, авиационная гигиена. С другой стороны, развитие гигиены идет и по пути интеграции. Гигиена развивается в тесном контакте с клиническими направлениями медицины, терапией, педиатрией, акушерством и гинекологией и другими отраслями.
   В настоящее время из гигиены выделился такой курс, как валеология – наука, изучающая закономерности формирования высокого уровня здоровья. Закономерностям формирования патологического процесса всегда уделялось большое внимание, но недостаточное внимание уделялось проблемам, связанным с условиями, факторами и закономерностями, определяющими условия формирования высокого уровня здоровья.

Методология гигиены

   Методология гигиены – ее раздел, часть гигиены, занимающаяся вопросами использования ее методических приемов для изучения закономерностей взаимодействия организма и окружающей среды. Методология гигиены связывается с разработкой гигиенических нормативов, методических указаний, санитарных норм и правил. В гигиене существуют так называемые специфические классические гигиенические методы. К ним относятся метод санитарного обследования, метод санитарного описания и метод санитарного наблюдения. В гигиене широко используются различные методы, связанные с оценкой факторов, действующих на человека. Такими методами являются физические, химические, которые оценивают физическое и химическое состояние окружающей среды. В гигиене широко используются токсикологические методы, направленные на оценку характера токсического действия на организм тех или иных химических веществ. Широко применяются физиологические методы, недаром гигиену называют прикладной физиологией.
   Для оценки воздействия факторов на те или иные системы организма широко используются биохимические, генетические, клинические и эпидемиологические методы исследования. Для обобщения полученных результатов широко используются статистические методы с привлечением современных технологий.
   Методы изучения влияния факторов окружающей среды в натурных условиях. Это направление называют натурным экспериментом. Что связывают с изучением состояния здоровья тех или иных групп населения, проживающих под воздействием различных факторов окружающей среды. В натурных условиях можно изучать и влияния условий труда на здоровье работающих. Изучают и влияние факторов учебного процесса на растущий организм ребенка. Проводятся клинико-гигиенические исследования, позволяющие разрабатывать предельно допустимые концентрации вредных химических веществ в рабочей зоне. Таким образом, клинико-гигиенические исследования и лабораторный эксперимент дополняют друг друга и составляют единый подход к гигиеническим исследованиям окружающей среды и здоровья человека.

Окружающая среда и здоровье

   Предметом гигиены являются окружающая среда и здоровье. В окружающей среде (экосистеме), биосфере происходят чрезвычайно сложные процессы. Одни из этих процессов связаны с действием факторов, направленных на обеспечение постоянства качества окружающей среды (воды, почвы, атмосферного воздуха). Это факторы стабилизирующие. Другие факторы (а они могут быть естественного, природного характера или связаны с деятельностью человека, так называемые антропогенные факторы) приводят к нарушению природного равновесия, гармонии в природе. Это дестабилизирующие факторы.
   В экологии существует понятие антропогенного обмена. Антропогенный обмен имеет на вводе природные ресурсы, на выводе – производственные и бытовые отходы. Экологический антропогенный обмен крайне несовершенен. Он носит открытый, незамкнутый характер и лишен того кругооборота жизни, который присущ биосфере в целом. Для характеристики антропогенного обмена существует показатель – его коэффициент полезного действия, показывающий величину использованных природных ресурсов на благо человека. Величина КПД на сегодня составляет 2 %, т. е. 98 % – это неиспользованные природные ресурс, и, более того, эта та часть ресурсов, которая выступает в качестве отходов – загрязнителей окружающей среды. Среди этих загрязнителей существуют вещества, у которых ярко выражено дестабилизирующее действие, так называемые дестабилизирующие факторы. К ним относятся галогенсодержащие компоненты, редкие и тяжелые металлы, вещества, обладающие ионизирующим эффектом, и другие факторы. В целом эти факторы по характеру действия могут быть отнесены к физическим или химическим. Серьезную опасность представляют химические соединения. Действие отдельных химических веществ может привести к развитию дестабилизационных, деструктивных процессов, которые приводят к нарастающему эффекту. Этот процесс выходит из-под контроля человека. Он превышает действие природных стабилизирующих факторов, в результате чего отмечается развитие спонтанно неуправляемых, нарастающих дестабилизирующих явлений. Вещества и факторы, обладающие таким действием, получили название суперэкотоксикантов. Химические вещества, отнесенные к этому классу, – это редкие и тяжелые металлы, ионизирующее излучение, галогенсодержащие компоненты. Все они обладают особым характером воздействия на организм человека, выражающимся в повреждении мембран клеток, в развитии нарушений в ферментных системах организма, нарушениях гомеостаза, приводя к деструктивным явлениям в организме человека. Для экотоксикантов характерны высокая устойчивость в окружающей среде, стабильность. Они способны накапливаться в объектах окружающей среды. Стабильность и способность химических веществ к накоплению в окружающей среде обеспечивают их миграцию, что чрезвычайно опасно для человека и среды его обитания.
   Между организмом человека и окружающей средой складывается тесное взаимодействие. Проблема единства организма и окружающей среды является важнейшей проблемой. Нужно сказать, что между окружающей средой и организмом складывается определенная форма равновесия. Это равновесие окружающей среды и организма формируется в результате важнейших механизмов физиологического реагирования организма на воздействия тех или иных факторов и осуществляется через работу центральной нервной системы. Этой формой равновесия является так называемый динамический стереотип, т. е., если фактор действует постоянно, носит повторяющийся характер, организм вырабатывает стереотипные реакции. Появление новых факторов приводит к разрушению этого равновесия. Особенно серьезную опасность в этом отношении представляют так называемые чрезмерные факторы. Они приводят к нарушению динамического стереотипа. Изменения динамического стереотипа связывают с существенным нарушением функций организма: нервно-психическим, стрессовым состоянием, экстремальным фактором.
   Задача гигиены – изыскание путей и методов формирования нового стереотипа. Это может быть достигнуто путем соответствующих изменений внешней среды, а также путем совершенствования механизмов адаптации организма. В диаграмме, разработанной академиком РАМН профессором Ю. Л. Лисициным, по данным экспертов Всемирной организации здравоохранения представлены факторы, определяющие уровень соматического здоровья человека. Определяющим фактором соматического (общего) здоровья, по данным экспертов Всемирной Организации здравоохранения, является стиль, или, как мы говорим, образ жизни. Он определяет соматическое состояние здоровья человека на 53 %. 17 % соматического здоровья человека определяется качеством окружающей среды, 20 % приходится на наследственные факторы, и только 10 % соматического здоровья определяются уровнем и доступностью медицинской помощи населению. Таким образом, на 70 % уровень здоровья человека зависит от тех моментов, которые напрямую связаны с гигиеной. Это здоровый образ жизни человека, качество окружающей среды.
   Окружающая среда оказывает влияние на основные показатели здоровья населения (продолжительность жизни, показатели рождаемости, уровень физического развития, заболеваемость и смертность). Более того, существует целый ряд заболеваний, которые носят ярко выраженный характер в зависимости от экологических условий. Это экологически обусловленные болезни. К ним, в частности, относится заболевание, получившее название «синдром хронической усталости». В основе данного заболевания лежат мембраноповреждающее действие и действие на ферментные системы химических загрязнителей и ионизирующих излучений. Неблагоприятное действие химических веществ приводит к резкому снижению иммунобиологических показателей. Массовые обследования крупных городов показывают резкое изменение иммунного гомеостаза у жителей. Изменение показателей иммунитета на 50 % отмечается у жителей Москвы. Возникает ситуация, свидетельствующая о так называемом вторичном неспецифическом иммунодефиците, связанным с воздействием на организм ряда неблагоприятных факторов, в том числе и химических веществ.
   Оценка уровня здоровья населения, проживающего в различных условиях окружающей среды, в настоящее время заставляет говорить о существовании экологически обусловленных очагов заболеваний. Эти заболевания связаны с загрязнением городской среды редкими и тяжелыми металлами, к действию которых прежде всего чувствителен детский организм. Потому изучение воздействия факторов городской среды на организм населения, особенно детского, является актуальной задачей гигиенической науки.
   Гигиена является профилактической медициной. Что же понимают под самой профилактикой? Существуют понятия первичной и вторичной профилактики. Начнем с понятия так называемой вторичной профилактики. Под вторичной профилактикой понимается комплекс мероприятий, направленных на локализацию и ослабление патологического процесса путем активной диспансеризация, противорецидивной терапии, санаторно-курортного лечения и лечебного питания, т. е. вторичная профилактика – это та деятельность, которая осуществляется врачами-практиками. Гигиена же осуществляет первичную профилактику. Основа первичной профилактики – устранение причин и факторов, приводящих к возникновению патологических процессов, и в целом заболеваний путем оздоровления природной, производственной, бытовой среды; формирования здорового образа жизни, направленного на повышение сопротивляемости организма и укрепление здоровья. Под профилактикой следует понимать не только предупреждение заболеваний и проведение оздоровительных мероприятий, имеющих целью охрану здоровья населения, а всю совокупность государственных, общественных и медицинских мер, направленных на создание для человека наиболее благоприятных условий жизни, в полной мере отвечающих его физиологическим потребностям.
   Гигиена является профилактической дисциплиной, и основу профилактических мероприятий составляет гигиеническое нормирование.

Гигиеническое нормирование

   Что следует понимать под гигиеническим нормативом? Гигиенический норматив – строгий диапазон параметров факторов среды, оптимальный и безвредный для сохранения нормальной жизнедеятельности и здоровья человека, человеческой популяции и будущих поколений. Санитарные правила, нормы, гигиенические нормативы – это нормативные акты, устанавливающие критерии безопасности и безвредности для человека факторов среды его жизнедеятельности. Санитарные правила обязательны для соблюдения всеми государственными органами и общественными объединениями, предприятиями и иными хозяйственными субъектами, организациями, учреждениями независимо от их подчиненности и форм собственности, должностными лицами и гражданами.
   Гигиенические нормативы для химических веществ устанавливаются в виде предельно допустимых концентраций (ПДК). Для физических факторов они устанавливаются в виде допустимых уровней воздействия (ПДУ).
   Для химических веществ ПДК устанавливаются в атмосферном воздухе населенных мест в виде максимальных разовых и среднесуточных предельно допустимых концентраций. Устанавливаются ПДК вредных химических веществ в воде водоемов, питьевой воде. Устанавливаются ПДК для содержания вредных химических веществ в почве. В пищевых продуктах вредные химические вещества нормируются в виде допустимых остаточных количеств (ДОК). Для химических веществ предельно допустимые количества в воде устанавливаются в миллиграммах на 1 дм3, или 1 л, для воздуха – в миллиграммах на 1 м3 воздуха, пищевых продуктов – в миллиграммах на 1 кг массы продукта. ПДК характеризуют безопасные уровни воздействия вредных химических веществ в тех или иных объектах окружающей среды.
   Также устанавливаются ПДУ воздействия физических факторов. В частности, существует представление об оптимальных и допустимых параметрах микроклимата, т. е. температуры, влажности, скорости движения воздуха и т. д. Устанавливаются оптимальные допустимые количества питательных веществ, их нормирование происходит с учетом физиологических потребностей. Существуют так называемые физиологические нормы потребности в белках, жирах, углеводах, минеральных веществах, витаминах. При установлении ПДК вредных химических веществ в окружающей среде соблюдают определенные принципы гигиенического нормирования, которые включают:
   1) принцип этапности;
   2) принцип пороговости.
   Этапность в нормировании состоит в том, что работа по нормированию проводится в строго определенной последовательности, связанной с выполнением соответствующего этапа исследований. Для химических веществ первым этапом данных исследований является аналитический этап. Аналитический этап включает в себя оценку физико-химических свойств: данные о структуре химического вещества, его параметрах – температуре плавления, точке кипения, растворимости в воде, других растворителях. Для проведения аналитических исследований необходимо наличие специфических методов определения. Вторым обязательным этапом гигиенических исследований при установлении ПДК является токсикометрия, т. е. определение основных параметров токсичности. Токсикометрия включает проведение исследований по определению параметров острой токсичности (острая токсикометрия или, проще, острые опыты). Далее следуют подострый эксперимент и хронический санитарно-токсикологический эксперимент.
   Главной и основной задачей острого опыта является определение среднесмертельных концентраций и доз LD50 или CL50. Постановка острых опытов позволяет оценить степень опасности химических веществ, характер направленности действия, уязвимость тех или иных систем и функций организма. Острые опыты позволяют наиболее обоснованно подойти к постановке подострого и хронического санитарно-токсикологического экспериментов. Этапность нормирования позволяет также в отдельных случаях сократить объемы проводимых исследований, используя так называемый принцип нормирования по аналогии, т. е. изучение показателей оцениваемого токсического вещества по физико-химическим свойствам позволяет выяснить наличие так называемых веществ-аналогов и осуществить нормирование, используя принцип аналогичности. Этот подход так и называется – нормирование по аналогии. Для веществ, обладающих сходными свойствами, т. е. нормирование которых проводится по аналогии, обязательным является установление параметров острой токсичности. Наличие параметров острой токсичности также позволяет сократить объем проводимых исследований и экономить значительное количество материальных средств, а также время, затраченное на проведение эксперимента.
   Важным этапом токсикометрических исследований является проведение подострого санитарно-токсикологического эксперимента. Подострый эксперимент позволяет выявить наличие кумулятивных свойств с позиции качественной и количественной оценки этого этапа действия. В подостром опыте также выявляются наиболее уязвимые системы организма, что позволяет объективно подойти к постановке основного этапа токсикометрии, связанного с определением параметров токсичного в условиях хронического эксперимента. В подостром эксперименте испытывается большой набор токсикологических тестов, оценивающих воздействие химического вещества на сердечно-сосудистую систему, нервную систему, желудочно-кишечный тракт, выделительную системы и иные функции и системы организма.
   Важнейшим принципом гигиенического нормирования является изучение порогового характера действия нормируемого фактора. По пороговому уровню воздействия в хроническом эксперименте определяется наименьшая концентрация, вызывающая сдвиги в организме лабораторного животного. По результатам хронического санитарно-токсикологического эксперимента для веществ, прежде всего обладающих выраженным токсическим действием, устанавливаются ПДК.
   При нормировании вредных химических веществ в водной среде обязательными этапами исследования являются изучение влияния вещества на органолептические свойства воды и санитарный режим водоемов, т. е. для установления ПДК химических веществ в водоемах вводятся дополнительные этапы исследования. На всех этих этапах изучения воздействия вредных химических веществ обязательно устанавливаются пороговые уровни воздействия, пороговые дозы и концентрации. По пороговым концентрациям определяется лимитирующий признак вредности, т. е. устанавливается та наименьшая концентрация, в которой прежде всего проявляется действие вредного химического вещества либо на органолептические свойства воды, либо на санитарный режим водоема, либо при оценке токсических свойств. При установлении ПДК вредных химических веществ в воде водоемов выявляют лимитирующий признак либо органолептический, либо по санитарному режиму, либо токсикологический. По лимитирующему признаку вредности с учетом наименьшей пороговой концентрации устанавливается ПДК. Таким образом, определяющими принципами нормирования являются принципы пороговости и этапности.
   Установленные принципы нормирования химических веществ и уровней воздействия физических факторов положены в основу действующего санитарного законодательства.
   ПДК позволяют, с одной стороны, осуществлять контроль содержания вредных химических веществ в окружающей среде, с другой – создать так называемую систему контроля содержания вредных химических веществ, т. е. осуществлять их мониторинг в окружающей среде. ПДК также используются при проектировании промышленных предприятий, ПДК закладываются в проекты строительства промышленных и других предприятий.

Структура санитарной службы

   Деятельность санитарно-эпидемиологической службы в Российской Федерации определяется Законом РФ «О санитарно-эпидемиологическом благополучии населения».
   Происходящие в 2004—2005 гг. в стране изменения затронули и структуру санитарной службы. Министерством здравоохранения и социального развития РФ Центры государственного санитарно-эпидемиологического надзора (ЦГСЭН) были преобразованы в территориальные управления Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ТУ) и федеральные государственные учреждения здравоохранения «Центры гигиены и эпидемиологии» (ФГУ).
   Основными задачами Территориального управления Роспотребнадзора (ТУ) являются:
   1) госнадзор и контроль исполнения требований законодательства РФ в области обеспечения санэпидблагополучия населения в сфере защиты прав потребителя;
   2) предупреждение вредного воздействия на человека факторов среды обитания;
   3) профилактика инфекционных и массовых неинфекционных заболеваний (отравлений) населения.
   Функции Территориального управления:
   1) госнадзор и контроль за исполнением требований РФ в обеспечения санэпидблагополучия населения в сфере защиты прав потребителя;
   2) санэпиднадзор при разработке, строительстве, реконструкции, ликвидации объектов градостроительства, промышленного строительства; за производством, реализацией продукции, за эксплуатацией систем водоснабжения, лечебно-профилактических учреждений;
   3) организация и проведение социально-гигиенического мониторинга;
   4) выдача санэпидемиологического заключения на программы, методики, режимы воспитания, обучения;
   5) проведение противоэпидемических мероприятий, аттестация декретированного контингента и осуществление их контроля;
   6) контроль лабораторных исследований и испытаний;
   7) проведение санитарно-карантинного контроля.
   Основной задачей федеральных государственных учреждений здравоохранения является проведение санитарно-эпидемиологических экспертиз, расследований, обследований, исследований, испытаний, токсикологических, гигиенических и других экспертиз.
   Главного государственного санитарного врача – руководителя Территориального учреждения и руководителя Федерального государственного учреждения здравоохранения в областном масштабе назначает на должность и освобождает министр здравоохранения и социального развития РФ по предоставлению руководителя Федеральной службы (Главного государственного санитарного врача РФ).
   Финансирование расходов на содержание территориальных учреждений здравоохранения осуществляется за счет средств федерального бюджета.
   Санитарный надзор в России осуществляется в виде двух форм. В виде предупредительного санитарного надзора и текущего санитарного надзора.
   Предупредительный санитарный надзор предусматривает разработку мероприятий, связанных с внедрением оздоровительных, профилактических мероприятий на этапе разработки проектов промышленных и гражданских объектов, строительстве коммунальных объектов, при разработке новых технологий, внедрении новых продовольственных и промышленных товаров, детских игрушек. Следует особо отметить действенную, а не созерцательную роль санитарной службы во всех вышеперечисленных мероприятиях. Другими словами, профилактика, предупредительный санитарный надзор должны всегда идти впереди человека, а не следовать за ним. В этом заключается важнейшая роль предупредительного санитарного надзора. Предупредительный санитарный надзор на примере строительства тех или иных объектов заканчивается на этапе его приемки. Начинается он с согласования проекта, контроля за ходом строительства и приемки. Важнейшим моментом при осуществлении предупредительного санитарного надзора за строящимися объектами является контроль за ходом скрытых работ. После приемки объекта начинается текущий санитарный надзор.
   Текущий санитарный надзор охватывает практически все направления деятельности тех или иных учреждений, объектов на территории того или иного населенного пункта, района, области и в целом всей России. Органы санэпиднадзора осуществляют контроль деятельности промышленных предприятий, коммунальных объектов, ДДУ, школ, лечебно-профилактических и других учреждений. Санитарно-эпидемиологическая служба наделена большими правами надзора за деятельностью тех или иных учреждений и организаций. Санитарная служба осуществляет контроль выполнения санитарных правил теми или иными учреждениями, предприятиями и объектами. Санитарные правила обязательны для выполнения всеми государственными и общественными организациями и другими хозяйственными организациями независимо от их подчиненности и формы собственности, а также должностными лицами и гражданами. Санитарная служба осуществляет контроль, направленный на предотвращение санитарных правонарушений. Санитарными правонарушениями признаются посягаемые на права граждан и интересы общества противоправное, виновное умышленное или неосторожное действие или бездействие, связанные с несоблюдением санитарного законодательства РФ, в том числе различных санитарных правил и норм.. Гигиенические нормативы, разработанные санитарные нормы и правила обеспечивают эффективное выполнение предупредительного и текущего санитарно-эпидемиологического надзора, эффективное осуществление мероприятий по оздоровлению окружающей среды и улучшению здоровья населения.

ЛЕКЦИЯ № 2. Роль и значение воды в жизни человека

Физиолого-гигиеническое значение воды

   Вода – важнейший фактор формирования внутренней среды организма и в то же время один из факторов внешней среды. Там, где нет воды, нет жизни. В воде происходят все процессы, характерные для живых организмов, населяющих нашу Землю. Недостаток воды (дегидратация) приводит к нарушению всех функций организма и даже гибели. Уменьшение количества воды на 10 % вызывает необратимые изменения. Тканевой обмен, процессы  жизнедеятельности протекают в водной среде.
   Вода участвует в процессах ассимиляции и диссимиляции, в процессах резорбции и диффузии, сорбции и десорбции, регулирует характер осмотических отношений в тканях, в клетках. Вода регулирует кислотно-щелочное равновесие, поддерживает рН. Буферные системы активны только в тех условиях, где есть вода.
   Вода – это общий показатель активности физиологических систем, фон и среда, в которой протекают все жизненно важные процессы. Неслучайно в организме человека содержание воды приближается к 60 % от всего веса тела. Установлено, что процессы старения связаны с потерей воды клетками.
   Необходимо отметить, что реакции гидролиза, а также все окислительно-восстановительные реакции протекают активно только в водных растворах.
   Вода принимает активное участие в так называемом водно-солевом обмене. Процессы пищеварения и дыхания протекают нормально в случае достаточного количества воды в организме. Велика роль воды и в выделительной функции организма, что способствует нормальному функционированию мочеполовой системы.
   Велика роль воды и в процессах теплорегуляции организма. Она участвует, в частности, в одном из важнейших процессов – процессе потоотделения.
   Необходимо отметить, что с водой в организм поступают минеральные вещества, притом в такой форме, когда они усваиваются почти полностью. Роль воды как источника минеральных солей сейчас общепризнана. Это так называемое фармакологическое значение воды. А Минеральные соли в воде находятся в виде ионов, что благоприятно для их усвоения организмом. Макро– и микроэлементы в продуктах питания находятся в виде комплексных соединений, которые даже под влиянием желудочно-кишечного сока плохо диссоциируют и поэтому хуже усваиваются.
   Вода – это универсальный растворитель. Она растворяет все физиологически активные вещества. Вода – это жидкая фаза, имеющая определенную физическую и химическую структуру, которая и определяет ее способность как растворителя. Живые организмы, потребляющие воду с разной структурой, развиваются и растут по-разному. Поэтому структуру воды можно рассматривать как важнейший биологический фактор. Структура воды может изменяться при ее опреснении. На структуру воды в значительной степени влияет ионный состав воды.
   Молекула воды – соединение не нейтральное, а электрически активное. Она имеет два активных электрических центра, которые создают вокруг себя электрическое поле.
   Для строения молекулы воды характерны две особенности:
   1) высокая полярность;
   2) своеобразное расположение атомов в пространстве.
   По современным представлениям молекула воды – это диполь, т. е. она имеет 2 центра тяжести. Один – центр тяжести положительных зарядов, другой – отрицательных. В пространстве эти центры не совпадают, они асимметричны, т. е. молекула воды имеет два полюса, создающих вокруг молекулы силовое поле, молекула воды полярна.
   В электростатическом поле пространственное расположение молекул воды (структура воды) определяет биологические свойства воды в организме.
   Молекулы воды могут существовать в следующих формах:
   1) в виде одиночной молекулы воды – это моногидроль, или просто гидроль (Н2О)1;
   2) в виде двойной молекулы воды – это дигидроль (Н2О)2;
   3) в виде тройной молекулы воды – тригидроль (Н2О)3.
   Агрегатное состояние воды зависит от наличия этих форм. Лед обычно состоит из тригидролей, имеющих самый большой объем. Парообразное состояние воды представлено моногидролями, так как значительное тепловое движение молекул при температуре 100 °С нарушает их ассоциацию. В жидком состоянии вода представляет смесь гидроля, дигидроля и тригидроля. Соотношение между ними определяется температурой. Образование ди– и тригидроля происходит вследствие притяжения молекул воды (гидролей) друг к другу.
   В зависимости от динамического равновесия между формами различают определенные виды воды.
   1. Вода, связанная с живыми тканями, – структурная (льдоподобная, или совершенная, вода), представленная квазикристаллами, тригидролями. Эта вода отличается высокой биологической активностью. Температура ее замерзания –20 °С. Такую воду организм получает только с натуральными продуктами.
   2. Свежеталая вода – на 70 % льдоподобная вода. Обладает лечебными свойствами, способствует повышению адаптогенных свойств, но быстро (через 12 ч) теряет свои биологические свойства стимулировать биохимические реакции в организме.
   3. Свободная, или обычная, вода. Температура ее замерзания равна 0 °С.
   Дегидратация
   Содержание воды в организме человека составляет 60 % массы его веса. Организм постоянно теряет оксидационную воду различными путями:
   1) с воздухом через легкие (1 м3 воздуха содержит в среднем 8—9 г воды);
   2) через почки и кожу.
   В целом человек за сутки теряет до 4 л воды. Естественные потери воды должны быть компенсированы введением определенного количества воды извне. Если потери не эквивалентны введению, в организме наступает дегидратация. Недостаток даже 10 % воды может значительно ухудшить состояние, а увеличение степени дегидратации до 20 % может приводить к нарушению жизненных функций и к смерти. Дегидратация более опасна для организма, чем голодание. Без пищи человек может прожить 1 месяц, а без воды – до 3 суток.
   Регуляция водного обменаосуществляется с помощью центральной нервной системы (ЦНС) и находится в ведении пищевого центра и центра жажды.
   В основе возникновения чувства жажды лежит, видимо, изменение физико-химического состава крови и тканей, в которых происходят нарушения осмотического давления вследствие обеднения их водой, что приводит к возбуждению отделов ЦНС.
   Большую роль в регуляции водного обмена играют железы внутренней секреции, особенно гипофиз. Взаимосвязь водного и солевого обмена называют водно-солевым обменом.
   Нормы водопотребления определяются:
   1) качеством воды;
   2) характером водоснабжения;
   3) состоянием организма;
   4) характером окружающей среды, и в первую очередь температурно-влажностным режимом;
   5) характером работы.
   Нормы водопотребления складываются из физиологических потребностей организма (2,5—5 л в сутки для отправления физиологических функций) для поддержания жизнедеятельности и воды, необходимой для хозяйственно-коммунальных целей. Последние нормы отражают санитарный уровень населенного пункта.
   В сухом и жарком климате, при выполнении интенсивной физической работы физиологические нормы повышаются до 8—10 л в сутки, в условиях сельской местности (при децентрализованном водоснабжении) – до 30—40 л. Нормы водопотребления на промышленном предприятии зависят от температуры окружающей среды производства. Особенно они велики в горячих цехах. Если количество выделяемого тепла составляет 20 ккал в 1 м3 в час, то нормы водопотребления за смену составят 45 л (с учетом душирования). Согласно санитарным стандартам нормы водопотребления регламентируются так:
   1) при наличии водопровода и отсутствии ванн – 125—160 л в сутки на человека;
   2) при наличии водопровода и ванн – 160—250 л;
   3) при наличии водопровода, ванн, горячей воды – 250—350 л;
   4) в условиях использования водоразборных колонок —30—50 л.
   Сегодня в крупных современных городах водоразбор на душу населения в сутки составляет 450 л и более. Так, в Москве самый высокий уровень водопотребления – до 700 л. В Лондоне – 170 л, Париже – 160 л, Брюсселе – 85 л.
   Вода является социальным фактором. От количества и качества воды зависят социальные условия жизни и уровень заболеваемости. По данным ВОЗ до 500 млн заболеваний в год, возникающих на Земле, связаны с качеством воды и уровнем водопотребления.
   Факторы, формирующие качество воды, можно разделить на 3 большие группы:
   1) факторы, определяющие органолептические свойства воды;
   2) факторы, определяющие химические свойства воды;
   3) факторы, определяющие эпидемиологическую опасность воды.
   Факторы, определяющие органолептические свойства воды
   Органолептические свойства воды формируют природные и антропогенные факторы. Запах, привкус, окраска и мутность являются важными характеристиками качества питьевой воды. Причины появления запахов, привкуса, цветности и мутности воды весьма разнообразны. Для поверхностных источников это в первую очередь почвенные загрязнения, поступающие с током атмосферных вод. Запах и привкус могут быть связаны с цветением воды и с последующим разложением растительности на дне водоема. Вкус воды определяется ее химическим составом, соотношением отдельных компонентов и количеством этих компонентов в абсолютных величинах. Это особенно относится к высокоминерализованным подземным водам в силу повышенного содержания в них хлоридов, сульфатов натрия, реже – кальция и магния. Так, хлорид натрия обуславливает соленый вкус воды, кальций – вяжущий, а магний – горьковатый. Вкус воды определяется и газовым составом: 1/3 всего газового состава составляет кислород, 2/3 – азот. В воде очень небольшое количество углекислого газа, но роль его велика. Углекислота может быть представлена в воде в различных формах:
   1) растворенной в воде с образованием угольной кислоты CO2 + H2O = H2CO3;
   2) диссоциированной угольной кислоты H2CO3 = H + HCO3 = 2H + CO3 с образованием бикарбонат иона HCO3 и CO3 – карбонат иона.
   Это равновесие между различными формами углекислоты определяется рН. В кислой среде, при рН = 4 присутствует свободная углекислота – СО2. При рН = 7—8 присутствует ион НСО3 (умеренно щелочная). При рН = 10 присутствует ион СО3 (среда щелочная). Все эти компоненты в разной степени определяют вкус воды.
   Для поверхностных источников основной причиной появления запахов, привкуса, цветности и мутности являются почвенные загрязнения, поступающие со стоком атмосферных вод. Неприятный привкус воды характерен для широко распространенных высокоминерализованных вод (особенно на юге и юго-востоке страны) преимущественно в силу повышенного содержания концентрации хлоридов и сульфатов натрия, реже кальция и магния.
   Окраска (цветность) природных вод чаще зависит от присутствия гуминовых веществ почвенного, растительного и планктонового происхождения. Строительство крупных водохранилищ с активными процессами развития планктона способствует появлению в воде неприятных запахов, привкусов и цветности. Гуминовые вещества безвредны для человека, но ухудшают органолептические свойства воды. Их трудно удалить из воды, к тому же они обладают высокой сорбционной способностью.

Роль воды в патологии человека

   Давно отмечена связь между заболеваемостью населения и характером водопотребления. Уже в древности были известны некоторые признаки воды, опасной для здоровья. Однако лишь в середине XIX в. эпидемиологические наблюдения и бактериологические открытия Пастера и Коха позволили установить, что вода может содержать некоторые патогенные микроорганизмы и способствовать возникновению и распространению заболеваний среди населения. Среди факторов, определяющих возникновение водных инфекций, можно выделить:
   1) антропогенное загрязнение воды (приоритет в загрязнении);
   2) выделение возбудителя из организма и попадание в водоем;
   3) стабильность в водной среде бактерий и вирусов;
   4) попадание микроорганизмов и вирусов с водой в организм человека.
   Водные инфекции
   Для водных инфекций характерны:
   1) внезапный подъем заболеваемости;
   2) сохранение высокого уровня заболеваемости;
   3) быстрое падение эпидемической волны (после устранения патологического фактора).
   Водным путем передаются холера, брюшной тиф, паратифы, дизентерия, лептоспироз, туляремия (загрязнение питьевой воды выделениями грызунов), бруцеллез. Не исключается возможность водного фактора в передаче сальмонеллезных инфекций. Среди вирусных заболеваний это кишечные вирусы, энтеровирусы. Они попадают в воду с фекальными массами и другими выделениями человека. В водной среде можно обнаружить:
   1) вирус инфекционного гепатита;
   2) вирус полиомиелита;
   3) аденовирусы;
   4) вирус Коксаки;
   5) вирус бассейного конъюнктивита;
   6) вирус гриппа;
   7) вирус ЕСНО.
   В литературе описаны случаи заражения туберкулезом при пользовании инфицированной водой. Водным путем могут передаваться заболевания, вызываемые животными паразитами: амебиаз, гельминтозы, лямблиоз.
   Амебиаз. Патогенное значение имеет дизентерийная амеба, распространенная в тропиках и в Средней Азии. Вегетативные формы амебы быстро погибают, но цисты устойчивы к воде. Более того, хлорирование обычными дозами неэффективно в отношении цист амебы.
   Яйца гельминтов и цисты лямблий поступают в водоемы с выделениями человека, а в организм поступают при питье, с загрязненной водой.
   Общепризнано, что возможность устранения опасности водных эпидемий и тем самым снижение заболеваемости населения кишечными инфекциями связаны с прогрессом в области водоснабжения населения. Поэтому правильно организованное водоснабжение является не только важным общесанитарным мероприятием, но и эффективным специфическим мероприятием против распространения кишечных инфекций среди населения. Так, успешная ликвидация вспышки холеры Эльтор в СССР (1970 г.) в большей степени была обусловлена тем, что преобладающая часть городского населения была ограждена от опасности водного пути ее распространения благодаря нормальному централизованному водоснабжению.
   Химический состав воды
   Факторы, определяющие химический состав воды,– химические вещества, которые условно можно разделить на:
   1) биоэлементы (йод, фтор, цинк, медь, кобальт);
   2) химические элементы, вредные для здоровья (свинец, ртуть, селен, мышьяк, нитраты, уран, СПАВ, ядохимикаты, радиоактивные вещества, канцерогенные вещества);
   3) индифферентные или даже полезные химические вещества (кальций, магний, марганец, железо, карбонаты, бикарбонаты, хлориды).
   Химический состав воды – это возможная причина заболеваний неинфекционной природы. Основы нормирования показателей безвредности химического состава питьевых вод разберем далее.
   Индифферентные химические вещества в воде
   Железо двух– или трехвалентное содержится во всех естественных водоисточниках. Железо – необходимая составная часть животных организмов. Оно используется для построения жизненно важных дыхательных и окислительных ферментов (гемоглобина, каталазы). Взрослый человек получает в сутки десятки милиграммов железа, поэтому количество поступающего с водой железа не имеет существенного физиологического значения. Однако присутствие железа в виде больших концентраций нежелательно по эстетическим и бытовым соображениям. Железо придает воде мутность, желто-бурую окраску, горьковато-металлический привкус, оставляет пятна ржавчины. Большое количество железа в воде способствует развитию железобактерий, при отмирании которых внутри труб накапливается плотный осадок. В подземных водах чаще находят двухвалентное железо. Если воду качают, то, соединяясь на поверхности с кислородом воздуха, железо переходит в трехвалентное, и вода приобретает бурый цвет. Таким образом, содержание железа в питьевой воде лимитируется влиянием на мутность и цветность. Допустимой концентрацией по стандарту является не более 0,3 мг/л, для подземных источников не более 1,0 мг/л.
   Марганец в подземных водах содержится в виде бикарбонатов, хорошо растворимых в воде. В присутствии кислорода воздуха превращается в гидроокись марганца и выпадает в осадок, чем усиливает показатель цветности и мутности воды. В практике централизованного водоснабжения необходимость ограничения содержания марганца в питьевой воде связывается с ухудшением органолептических свойств. Нормируется не более 0,1 мг/л.
   Алюминий содержится в питьевой воде, подвергшейся обработке – осветлению в процессе коагуляции сернокислым алюминием. Избыточные концентрации алюминия придают воде неприятный, вяжущий привкус. Остаточное содержание алюминия в питьевой воде (не более 0,2 мг на л) не вызывает ухудшения органолептических свойств воды (по мутности и привкусу).
   Кальций и его соли обуславливают жесткость воды. Жесткость питьевой воды является существенным критерием, по которому население оценивает качество воды. В жесткой воде овощи и мясо плохо развариваются, так как соли кальция и белки пищевых продуктов образуют нерастворимые соединения, которые плохо усваиваются. Затруднена стирка белья, в нагревательных приборах образуется накипь (нерастворимый осадок). Экспериментальные исследования показали, что при питьевой воде с жесткостью 20 мг. экв/л частота и вес образования камней были значительно больше, чем при употреблении воды с жесткостью 10 мг. экв/л. Влияние воды с жесткостью 7 мг. экв на л на развитие уролитиаза не было обнаружено. Все это позволяет считать обоснованным принятый норматив жесткости в питьевой воде – 7 мг экв на л.
   Биоэлементы
   Медь в малых концентрациях встречается в природных подземных водах и является истинным биомикроэлементом. Потребность в ней (в основном для кроветворения) взрослого человека невелика – 2—3 г в сутки. Она покрывается в основном суточным пищевым рационом. В больших концентрациях (3—5 мг/л) медь оказывает влияние на вкус (вяжущий). Норматив по этому признаку не более 1 мг/л. в воде.
   Цинк в качестве микроэлемента встречается в природных поземных водах. В больших концентрациях он встречается в водоемах, загрязненных промышленными сточными водами. Хронические отравления цинком неизвестны. Соли цинка в больших концентрациях действуют раздражительно на ЖКТ, но значение соединений цинка в воде определяется их влиянием на органолептические свойства. При 30 мг/л вода приобретает молочный цвет, а неприятный металлический вкус исчезает при 3 мг/л, поэтому нормируют  содержание цинка в воде не более 3 мг/л.
   Химический состав воды как причина заболеваний неинфекционной природы
   Развитие медицинской науки позволило расширить представления об особенностях химического (солевого и микроэлементного) состава воды, его биологической роли и возможного вредного влияния на здоровье населения.
   Минеральные соли (макро– и микроэлементы) принимают участие в минеральном обмене и жизнедеятельности организма, влияют на рост и развитие тела, кроветворение, размножение, входят в состав ферментов, гормонов и витаминов. В организме человека обнаружены йод, фтор, медь, цинк, бром, марганец, алюминий, хром, никель, кобальт, свинец, ртуть и др.
   В природе постоянно происходит рассеивание микроэлементов (за счет метеофакторов, воды, жизнедеятельности организмов). Это приводит к их неравномерному распределению (недостатку или избытку) в почве и воде различных географических регионов, что ведет к изменению флоры и фауны и появлению биогеохимических провинций.
   Из заболеваний, связанных с неблагоприятным химическим составом воды, прежде всего выделяют эндемический зоб. Данное заболевание широко распространено и на территории Российской Федерации. Причинами заболевания являются абсолютная недостаточность йода во внешней среде и социально-гигиенические условия жизни населения. Суточная потребность в йоде составляет 120—125 мкг. В местностях, для которых не характерно данное заболевание, поступление йода в организм происходит из растительной пищи (70 мкг йода), из животной пищи (40 мкг), из воздуха (5 мкг) и из воды (5 мкг). Йоду в питьевой воде принадлежит роль индикатора общего уровня содержания этого элемента во внешней среде. Зоб распространен в сельских районах, где население питается исключительно пищевыми продуктами местного происхождения, и в почве йода мало. Жители Москвы и Питера используют воду тоже с низким содержанием йода (2 мкг), но эпидемий здесь нет, так как население питается привозными продуктами из других областей, что обеспечивает благоприятный баланс йода.
   Основными профилактическими мероприятиями в отношении эндемического зоба являются сбалансированное питание, йодирование соли, добавление меди, марганца, кобальта, йода в рацион. Должна также преобладать углеводистая пища и растительные белки, так как они нормализуют функцию щитовидной железы.
   Эндемический флюороз – заболевание, появляющееся у коренного населения определенных районов России, Украины и других, ранним симптомом которого является поражение зубов в виде пятнистости эмали. Общепринято, что пятнистость не является следствием местного действия фтора. Фтор, попадая в кровь, оказывает общетаксическое действие, в первую очередь вызывает деструкцию дентина.
   Питьевая вода – основной источник поступления фтора в организм, чем и определяется решающее значение фтора питьевой воды в развитии эндемического флюороза. Суточный пищевой рацион дает 0,8 мг фтора, а содержание фтора в питьевой воде нередко составляет 2—3 мг/л. Имеется четкая связь между тяжестью поражения эмали и количеством фтора в питьевой воды. Определенное значение для развития флюороза имеют перенесенная инфекция, недостаточное содержание в рационе молока и овощей. Заболевание определяется и социально-культурными условиями жизни населения. Впервые это заболевание было зарегистрировано в Индии, но у англичан и местной аристократии флюороз встречался редко, хотя содержание фтора в воде было на уровне 2—3 мг/л. У индийцев, влачивших полуголодное существование, пятнистость эмали выявлялась уже в тех местностях, где содержание фтора было даже 1,5 мг на 1 л.
   Профилактическими мероприятиями в отношении действия фтора можно считать:
   1) употребление воды с повышенным содержанием минеральных солей;
   2) употребление пищи и жидкости с повышенным содержанием кальция (овощи и молочные продукты), так как кальций связывает фтор и переводит его в нерастворимый комплекс Са + F = СаF2;
   3) защитную роль витаминов;
   4) ультрафиолетовое облучение;
   5) дефторирование воды.
   Флюороз – общее заболевание всего организма, хотя отчетливее всего оно проявляется в поражении зубов. Однако при флюорозе отмечаются:
   1) нарушение (торможение) фосфорно-кальциевого обмена;
   2) нарушение (торможение) действия внутриклеточных энзимов (фосфотаз);
   3) нарушение иммунобиологической активности организма.
   Выделяют следующие стадии флюороза:
   1 – появление меловидных пятен;
   2 – появление пигментных пятен;
   3 и 4 – появление дефектов и эрозий эмали (деструкция дентина).
   Содержание фтора в воде нормируется стандартом, так как вредна вода и с малым – 0,5—0,7 мг/л – содержанием фтора, так как развивается кариес зубов. Нормирование проводят по климатическим районам, в зависимости от уровня водопотребления. В 1—2-ом районе – 1,5 мг/л, в 3-м – 1,2 мг/л, в 4-м – 0,7 мг/л. Кариесом поражено 80—90 % всего населения. Это потенциальный источник инфекции и интоксикации. Кариес приводит к нарушению пищеварения и хроническим заболеваниям желудка, сердца и суставов. Убедительным доказательством антикариесного действия фтора является практика фторирования воды. При содержании фтора, равном 1,5 мг/л, заболеваемость кариесом наименьшая. В Норильске после 7 лет фторирования воды у детей 7-летнего возраста заболеваемость кариесом была на 43 % меньше. У лиц, которые употребляют фторированную воду в течение всей жизни, заболеваемость кариесом меньше на 60—70 %. На острове Новая Гвинея люди не знают кариеса, так как содержание фтора в питьевой воде оптимально.
   Ряд химических веществ вызывают микрохимические загрязнения, или водные интоксикации
   Так, выделяют группу атерогенных элементов(это медь, кадмий, свинец), избыток которых оказывает неблагоприятное влияние на сердечно-сосудистую систему.
   Более того, свинец у детей проникает через гематоэнцефалические барьеры, вызывая поражение мозга. Свинец вытесняет кальций из костной ткани.
   Ртуть вызывает болезнь Минамата (выраженное эмбриотоксическое действие).
   Кадмий вызывает болезнь Итай-Итай (нарушение обмена липидов).
   Металлы, опасные по эмбриотоксическому действию образуют, гонадотоксический ряд, который выглядит так: ртуть – кадмий – таллий – серебро – барий —хром – никель – цинк.
   Мышьяк обладает выраженной способностью к кумуляции в организме, его хроническое действие связано с воздействием на периферическую нервную систему и развитием полиневритов.
   Бор обладает выраженным гонадотоксическим действием. Нарушает сексуальную активность мужчин и овариально-менструальный цикл у женщин. Бором богаты природные подземные воды Западной Сибири.
   Ряд синтетических материалов, используемый в водоснабжении, способен вызвать возникновение интоксикации. Это прежде всего синтетические трубы, полиэтилен, фенолформальдегиды, коагулянты и флокулянты (ПАА), смолы и мембраны, используемые в опреснении. Опасны для здоровья попадающие в воду ядохимикаты, канцерогенные вещества, нитрозамины.
   СПАВ (синтетические поверхностно-активные вещества) стабильны в воде и слаботоксичны, но обладают аллергенным действием, а также способствуют лучшему усвоению канцерогенных веществ и ядохимикатов.
   При пользовании водой, содержащей повышенные концентрации нитратов, дети раннего грудного возраста заболевают водно-нитратной метгемоглобинемией. Легкая форма заболевания может быть и у взрослых. Это заболевание характеризуется расстройством пищеварения у детей (диспепсии), уменьшением кислотности желудочного сока. В связи с этим в верхних отделах кишечника нитраты восстанавливаются до нитритов NO2. Нитраты поступают в питьевую воду из-за широкой химизации сельского хозяйства, использования азотистых удобрений. У детей рН желудочного сока = 3, что способствует восстановлению нитратов в нитриты и образованию метгемоглобина. К тому же у детей отсутствуют ферменты, восстанавливающие метгемоглобин в гемоглобин. Очень опасно поступление нитратов с детскими смесями, приготовленными на загрязненной воде.
   Солевой состав – фактор постоянно и длительно воздействующий на здоровье населения. Это фактор малой интенсивности. Отмечено влияние хлоридных, хлоридно-сульфатных и гидрокарбонатных типов вод на:
   1) водно-солевой обмен;
   2) пуриновый обмен;
   3) снижение секреторной и увеличение моторной деятельности органов пищеварения;
   4) мочевыделение;
   5) кроветворение;
   6) сердечно-сосудистые заболевания (гипертоническую болезнь и атеросклероз).
   Повышенный солевой состав воды
   сказывается на неудовлетворительных органолептических свойств, что приводит к снижению «водного аппетита» и ограничению ее потребления.
   Повышенная жесткость (15—20 мг. экв/л) один из факторов развития мочекаменной болезни; и ведёт к развитию эндемического уролитиаза;
   Затруднено использование воды повышенной жесткости для хозяйственных, бытовых целей, полива;
   При длительном употреблении высокоминерализованных хлоридных вод отмечается повышенная гидрофобность тканей, способность их удерживать воду, напряжение гипофиз-адреналовой системы;
   Использование воды хлоридного класса с уровнем общей минерализации более 1 г/л вызывает гипертензивные состояния.!
   Влияние воды с низкой минерализацией (опресненная, дистиллированная) вызывает:
   1) нарушение водно-солевого обмена (снижение обмена хлора в тканях);
   2) изменение функционального состояния гипофиз-адреналовой системы, напряжение защитно-приспособительных реакций;
   3) отставание прироста и привеса тела. Минимальный допустимый уровень общей минерализации опресненной воды должен быть не менее 100 мг/л.

ЛЕКЦИЯ № 3. Гигиенические вопросы организации хозяйственно-питьевого водоснабжения

Гигиеническая характеристика источников централизованного хозяйственно-питьевого водоснабжения

   Для обеспечения высокого уровня качества питьевой воды необходимо выполнение ряда обязательных условий, таких как:
   1) соответствующее качество воды источника централизованного водоснабжения;
   2) создание благоприятной санитарной ситуации вокруг источников и самой системы водоснабжения (водопровода).
   Питьевая вода может отвечать высоким требованиям только после ее надежной обработки и кондиционирования.
   В качестве источников водоснабжения могут быть использованы подземные и поверхностные источники водоснабжения.
   Подземные источники имеют ряд достоинств:
   1) они в определенной мере защищены от антропогенного загрязнения;
   2) они отличаются высокой стабильностью бактериального и химического состава.
   На формирование качества воды грунтовых и межпластовых вод оказывают влияние следующие факторы:
   1) климат;
   2) геоморфологические структуры;
   3) характер растительности (литологические структуры).
   В северных зонах преобладают бикарбонатно-натриевые воды, богатые органикой, они залегают очень поверхностно, минерализация их низкая.
   Ближе к югу появляются сульфатные, хлоридные и кальциевые воды. Эти воды залегают глубоко, отличаются высоко надежными бактериологическими показателями.
   Подземные водоисточники в зависимости от глубин залегания и отношения к породам делятся на:
   1) почвенные;
   2) грунтовые;
   3) межпластовые.
   Почвенные водоисточники залегают неглубоко (2—3 м), фактически лежат у поверхности. Они обильны весной, летом пересыхают, зимой промерзают. Как источники водоснабжения эти воды интереса не представляют. Качество вод определяется загрязненностью атмосферных осадков. Количество этих вод сравнительно невелико, органолептические свойства неудовлетворительные.
   2. Грунтовые воды – расположены в 1-ом от поверхности водоносном горизонте (от 10—15 м до нескольких десятков метров). Питание этих горизонтов осуществляется в основном за счет фильтрации атмосферных осадков. Режим питания не постоянен. Атмосферные осадки фильтруются через большую толщу грунта, поэтому в бактериальном отношении эти воды чище, чем почвенные, но еще не всегда надежны. Грунтовые воды имеют более или менее стабильный химический состав, могут содержать значительное количество двухвалентного железа, которое при подъеме воды наверх переходит в трехвалентное (бурые хлопья). Грунтовые воды могут использоваться для децентрализованного, местного водоснабжения, так как мощность их невелика.
   Межпластовые воды лежат глубоко в водоносном горизонте, залегающем (до 100 м) между двумя водонепроницаемыми пластами, один из которых – нижний – водонепроницаемое ложе, а верхний – водонепроницаемая кровля. Поэтому они надежно изолированы от атмосферных осадков и грунтовых вод. Это предопределяет свойства воды, в частности ее бактериальный состав. Эти воды могут заполнить все пространство между пластами (как правило, глиняными) и испытывают гидростатическое давление. Это так называемые напорные, или артезианские, воды.
   Качество артезианских вод по физическим и органолептическим свойствам вполне удовлетворительно. Надежны такие воды и в бактериальном отношении, они имеют стабильный химический состав. В таких водах, как указывалось выше, нередко находят сероводород (результат действия микробов на сернистые соединения железа) и аммиак, в них мало кислорода, отсутствуют гуминовые вещества.
   Классификация вод по химическому составу (гидрохимические классы вод) выглядит следующим образом.
   1. Бикарбонатные воды (северные районы страны): анион HCO¯3 и катионы Ca++, Mg++, Na+. Жесткость = 3—4 мг. экв/л.
   2. Сульфатные: анион SO4–, катионы Ca++, Na+.
   3. Хлоридные: анион Cl-, катионы Ca++, Na+.
   Поверхностные источники водоснабжения – реки, озера, пруды, водохранилища, каналы. Они широко используются для водоснабжения крупных городов из-за громадного количества воды в них (дебита). Одновременно это накладывает и определенный отпечаток на них. В северных районах (зоне избыточного увлажнения) воды слабо минерализованы. Здесь преобладают торфяные почвы, которые обогащают воды гуминовыми веществами.
   В южных районах почва обогащает воду солями. Минерализация составляет до 23 г/л. Для поверхностных источников при переходе с севера на юг характерны:
   1) увеличение общей минерализации;
   2) изменение класса вод от HCO3 (бикарбонатных) к SO4 (сульфатным) и Cl (хлоридным).
   Поверхностные источники подвержены значительным антропогенным загрязнениям. Уровень загрязнения органическими веществами оценивается высокой окисляемостью. Нарушается кислородный режим водоемов. Видовой состав микрофлоры резко сужен. Увеличивается уровень БПК При выборе источника водоснабжения нужно ориентироваться на уровень и состояние процессов самоочищения. Если вода чистая и процесс самоочищения протекает в благоприятных условиях, то БПК = 3 мг/л.
   Выбор источника хозяйственно-питьевого водоснабжения
   Естественно, что при выборе источника учитывают не только качественную сторону самой воды, но и мощность самих источников. При выборе источников необходимо в первую очередь ориентироваться на такие источники, вода которых приближается по своему составу к требованиям СанПиНа 2.1.4.1074-01 «Питьевая вода». При отсутствии или невозможности использования таких источников вследствие недостаточности их дебита или по технико-экологическим соображениям в соответствии с требованиями СанПиНа 2.1.4.1074-01 необходимо приходить к другим источникам в следующем порядке: межпластовые безнапорные воды, грунтовые воды, открытые водоемы.
   Условия выбора водоисточника:
   1) вода источника не должна иметь такой состав, который не может быть изменен и улучшен современными методами обработки, или ограничена возможность очистки по технико-экономическим показателям;
   2) интенсивность загрязнения должна соответствовать эффективности способов обработки воды;
   3) совокупность природных и местных условий должна обеспечить надежность водоисточника в санаторном отношении.

Зоны санитарной охраны (ЗСО) водоисточников

   Опыт убеждает, что, несмотря на существующую систему водоочистки, крайне важно принять меры, исключающие значительное загрязнение водоисточников. Для этого устанавливают специальные ЗСО. Под ЗСО понимают специально выделенную вокруг источника территорию, на которой должен соблюдаться установленный режим, с целью охраны водоисточника и водопроводных сооружений и окружающей территории от загрязнения.
   По законодательству эта зона делится на 3 пояса:
   1) пояс строгого режима;
   2) пояс ограничений;
   3) пояс наблюдения.
   ЗСО поверхностных водоемов
   Первый пояс (пояс строгого режима) – участок, где находятся место забора воды и головные сооружения водопровода. Сюда включается акватория, примыкающая к водозабору на протяжении не менее 200 м вверх по течению и не менее 100 м ниже водозабора. Здесь выставляется военизированная охрана. Запрещаются проживание и временное пребывание посторонних лиц, а также строительство. В границы 1-го пояса небольших поверхностных источников обычно включается противоположный берег полосой 150—200 м. При ширине водоема менее 100 м в пояс входят вся акватория и противоположный берег – 50 м. При ширине более 100 м в 1-й пояс входит полоса акватории до фарватера (до 100 м). При водозаборе из озера или водохранилища в 1-й пояс входит береговая полоса не менее чем на 100 м от водозабора во всех направлениях. Акватория 1-ого пояса должна быть отмечена бакенами.
   Второй пояс (пояс ограничений) – территория, использование которой для промышленности, сельского хозяйства и строительства или совсем недопустимо, или разрешается на известных условиях. Здесь ограничиваются спуск всех сточных вод и массовое купание.
   Для открытых водоисточников протяженность пояса вверх по течению определяется расстоянием, выше которого поступление загрязнений не отражается на качестве воды в месте забора. Так, верхняя точка этой границы определяется временем, в течение которого поступившие здесь загрязнения при подходе к водозабору ликвидируются в результате процессов самоочищения. Это время установлено в 3—5 суток. Так как процессы самоочищения в зимний период значительно замедляются, то ЗСО 2-го пояса должна быть удалена от водозабора так, чтобы пробег воды от верхней границы зоны до водозабора обеспечил период бактериального самоочищения не менее 5 суток. Ориентировочно это расстояние для крупных рек составляет вверх по течению 20—30 км, для средних – 30—60 км.
   Нижняя граница 2-го пояса устанавливается не менее 250 м от водоразбора с учетом ветрового обратного водотечения.
   Пояс наблюдения —3-й пояс, включающий все населенные пункты, имеющие связь с данным источником водоснабжения.
   ЗСО для подземных источников
   ЗСО подземных источников устанавливаются вокруг водозаборных скважин, так как защищенность водонепроницаемыми породами не всегда надежна.
   Изменение состава подземных вод может иметь место при интенсивном заборе воды из скважины, когда по законам гидродинамики вокруг скважины создаются зоны пониженного давления, что может создать подсос воды. Изменение состава подземных вод может быть обусловлено и влиянием внешних поверхностных загрязнений. Однако его проявление следует ожидать через длительный промежуток времени, так как скорость фильтрации обычно не более 0,1 м в сутки.
   На территории зоны строгого режима подземного водоисточника должны размещаться все головные водопроводные сооружения: скважины и каптажи, насосные установки и оборудование для обработки воды.
   Зона ограничения устанавливается с учетом мощности скважины и характера грунта. Эта зона для грунтовых вод устанавливается радиусом 50 м и площадью 1 га, для межпластовых вод – 30 м и площадью 0,25 га.
   Требования, предъявляемые к качеству воды источника
   Гигиенические требования, предъявляемые к качеству воды открытых водоисточников, изложены в СанПиНе 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод». Документ устанавливает гигиенические требования к качеству воды водных объектов для двух категорий водопользования. Первая – когда источник служит для забора воды, используемой для питьевого, хозяйственно-бытового и водоснабжения предприятий пищевой промышленности. Второй – для рекреационного водопользования, когда объект используется для купания, занятий спортом и отдыхом.
   Нормативы качества воды
   1. Органолептические свойства.
   Запах воды не должен превышать 2 баллов, концентрация водородных ионов (рН) не должна выходить за пределы 6,5—8,5 для обеих категорий водопользования. Окраска для первой категории не должна обнаруживаться в столбике высотой 20 см, для второй – 10 см. Концентрация взвешенных веществ при сбросе сточных вод в контрольном растворе не должно увеличиваться по сравнению с естественными условиями более чем на 0,25 мг/дм3 для 1-й категории и более чем на 0,75 мг/дм3 для 2-й категории водоемов. Плавающие примеси обнаруживаться не должны.
   2. Содержание токсических химических веществ не должно превышать предельно допустимых концентраций и ориентировочно допустимых уровней веществ в водных объектах вне зависимости от категории водопользования (ГН 2.1.5.689-98, ГН 2.1.5.690-98 с дополнениями).
   В случае присутствия в воде водного объекта двух и более веществ 1-го и 2-го классов опасности с однонаправленным механизмом токсического действия сумма отношений концентраций каждого из них к их ПДК не должна превышать 1:
   (С1 / ПДК1) + (С2 / ПДК2) + … (Сn / ПДКn) ≤ 1,
   где С1, …, Сn – концентрации веществ;
   ПДК1, …, ПДКn – ПДК тех же веществ.
   3. Показатели, характеризующие микробиологическую безопасность воды.
   Термотолерантные колиформные бактерии в обеих категориях водопользования не должны превышать 100 КОЕ/100 мл, а колифаги – 10 БОЕ/100 мл.
   Показатель общих колиформных бактерий для 1-й категории водопользования должен быть не более 1000 КОЕ/100 мл, для 2-й – не более 500 КОЕ/мл.
   Жизнеспособных яиц гельминтов, цист патогенных кишечных простейших онкосфер тениид в 25 л пробы воды обеих категорий быть не должно, так же как и возбудителей кишечных инфекций.
   Несмотря на почти непрерывное поступление разнообразных загрязнений в открытые водоемы, в их большинстве прогрессирующего ухудшения качества воды не наблюдается. Это происходит потому, что физико-химические и биологические процессы ведут к самоочищению водоемов от взвешенных частиц, органических веществ и микроорганизмов. Сточные воды разбавляются. Взвешенные вещества, яйца гельминтов, микроорганизмы частично осаждаются, вода осветляется. Растворенные в воде органические вещества минерализуются за счет жизнедеятельности населяющих водоемы микроорганизмов. Процессы биохимического окисления заканчиваются нитрификацией с образованием конечных продуктов – нитратов, карбонатов, сульфатов. Для биохимического окисления органических веществ необходимо наличие в воде растворенного кислорода, запасы которого по мере расхода восстанавливаются за счет диффузии из атмосферы.
   В процессе самоочищения происходит отмирание сапрофитов и патогенных микроорганизмов. Они погибают вследствие обеднения воды питательными веществами, бактерицидного действия солнечных лучей, бактериофагов, выделяемых сапрофитами.
   Ценным показателем степени загрязнения воды органическими веществами и интенсивности процессов самоочищения является БПК. БПК – это количество кислорода, необходимое для полного биохимического окисления всех веществ, содержащихся в 1 л воды при температуре 20 °С. Чем значительнее загрязнение воды, тем больше ее БПК. Так как определение БПК длительно (до 20 суток), то в санитарной практике чаще определяют БПК5, т. е. потребление кислорода 1 л воды в течение 5 суток. В 1-й категории водопользования БПК5 должно быть меньше 2 мг О2/дм3, во 2-й категории водоемов – 4 мг О2/дм3.
   Растворимый кислород не должен быть менее 4 мг/дм3 для обеих категорий водоемов. Химическое потребление кислорода не должно превышать 15 мг О2/дм3 для 1-й категории и 30 О2/дм3 для 2-й категории водопользования водоема.
   Гигиенические требования, предъявляемые к качеству воды источников нецентрализованного водоснабжения (подземных источников, предназначенных для удовлетворения питьевых и хозяйственных нужд, при помощи водозаборных устройств без разводящей сети), изложены в СанПиНе 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».
   Нормативы качества воды
   1. Органолептические показатели.
   Запах и привкус не более 2—3 баллов.
   Цветность не более 30°.
   Мутность не более 2,6—3,5 ЕМФ (единиц мутности по формазину) или 1,5—2,0 мг/л (по коалину).
   2. Содержание токсических химических веществ неорганической и органической природы не должно превышать предельно допустимых концентраций.
   3. Показатели, характеризующие микробиологическую безопасность воды.
   Общие колиформные бактерии в 100 мл воды должны отсутствовать. При их отсутствии дополнительно проводят определение глюкозоположительных колиформных бактерий (БГКП) с постановкой оксидазного теста.
   ОМЧ (общее микробное число) не должно превышать 100 микробов в 1 мл.
   Термотолерантные колиформные бактерии и колифаги в 100 мл исследуемой воды должны отсутствовать.

ЛЕКЦИЯ № 4. Гигиеническое нормирование качества питьевой воды

Требования к качеству питьевой воды централизованного хозяйственно-питьевого водоснабжения и обоснование нормативов качества питьевой воды

   В настоящее время на территории РФ требования к качеству воды централизованного хозяйственно-питьевого водоснабжения регулируются государственным стандартом – санитарными правилами и нормами РФ или СанПиНом РФ 2.1.4.1074-01. СанПиН является нормативным актом, устанавливающим критерии безопасности и безвредности для человека воды централизованных систем питьевого водоснабжения. СанПиН применяется в отношении воды, подаваемой системами водоснабжения и предназначенной для потребления населения в питьевых и бытовых целях, для использования в процессах переработки продовольственного сырья, производства, транспортировки и хранения пищевых продуктов.
   Более того, СанПиН регламентирует и само проведение контроля качества воды централизованного хозяйственно-питьевого водоснабжения.
   Согласно требованиям СанПиНа питьевая вода должна быть безопасной в эпидемиологическом и радиационном отношении, безвредной по химическому составу и иметь благоприятные органолептические свойства. При этом качество питьевой воды должно соответствовать гигиеническим нормативам как перед ее поступлением в распределительную сеть, так и в любой последующей точке водоразбора.

Показатели санитарно-эпидемиологической безопасности воды

   Наиболее обычный и распространенный вид опасности, связанный с питьевой водой, обусловлен ее загрязнением сточными водами, другими отходами или фекалиями человека и животных.
   Фекальное загрязнение питьевой воды может обусловить поступление в воду ряда различных кишечных патогенных организмов (бактериальных, вирусных и паразитических). Кишечные патогенные болезни широко распространены во всем мире. Среди возбудителей, встречающихся в загрязненной питьевой воде, обнаруживают штаммы сальмонелл, шигелл, энтеропатогенной кишечной палочки, холерного вибриона, иерсинии, энтероколитики, кампилобактериоза. Эти организмы вызывают заболевания, варьирующие от легкой формы гастрита до тяжелых, а иногда и летальных форм дизентерии, холеры, брюшного тифа.
   Другие организмы, естественно присутствующие в окружающей среде и не считающиеся патогенными агентами, могут иногда вызывать оппортунистические заболевания (т. е. заболевания, вызванные условно-патогенными микроорганизмами – клебсиелами, псевдомонадами и др.). Такие инфекции чаще всего возникают у лиц с нарушениями иммунной системы (местного или общего иммунитета). При этом питьевая вода, используемая ими, может вызвать самые различные инфекции, в том числе поражения кожи, слизистых глаз, уха, носоглотки.
   Для различных водных патогенных агентов существует широкий диапазон уровней минимальной инфицирующей дозы, необходимой для развития инфекции. Так, для сальмонелл, путь передачи инфекции которых в основном с пищевыми продуктами, а не с водой, для развития заболевания необходимо единичное количество возбудителя. Для шигелл, также редко передающихся через воду, – это сотни клеток. Для водного пути передачи инфекции возбудителями энтеропатогенной кишечной палочкой или холерным вибрионом для развития заболевания необходимы миллиарды клеток. Однако и наличие централизованного водоснабжения не всегда достаточно, чтобы не возникли единичные случаи заболеваний, если имеются нарушения санитарно-гигиенического характера.
   Несмотря на то что сегодня имеются разработанные методы обнаружения многих патогенных агентов, они остаются достаточно трудоемкими, длительными и дорогостоящими. В связи с этим проведение мониторинга за каждым патогенным микроорганизмом в воде признано нецелесообразным. Более логичным подходом является выявление организмов, обычно присутствующих в фекалиях человека и других теплокровных животных, в качестве индикаторов фекального загрязнения, а также показателей эффективности процессов очистки и обеззараживания воды. Выявление таких организмов указывает на присутствие фекалий, а следовательно, на возможное присутствие кишечных патогенных агентов. И наоборот, отсутствие фекальных микроорганизмов свидетельствует, что патогенные агенты, вероятно, отсутствуют. Таким образом, поиск таких организмов – индикаторов фекального загрязнения – позволяет получить средство контроля качества воды. Большое значение имеет также надзор за бактериологическими показателями качества неочищенной воды, причем не только при оценке степени ее загрязнения, но и при выборе источника водоснабжения и наилучшего способа очистки воды.
   Бактериологическое исследование представляет собой наиболее чувствительный тест для выявления свежего и вследствие этого потенциально опасного фекального загрязнения, обеспечивая таким образом гигиеническую оценку качества воды с достаточной чувствительностью и специфичностью, которая не может быть получена химическим анализом. Важно, чтобы исследования проводились регулярно и достаточно часто, поскольку загрязнение может быть периодическим и может не обнаруживаться при анализе разовых проб. Следует также отдавать себе отчет, что баканализ может свидетельствовать только о возможности или отсутствии загрязнения на момент исследования.
   Организмы – индикаторы фекального загрязнения
   Использование типичных кишечных организмов в качестве индикаторов фекального загрязнения (а не самих патогенных агентов) является общепризнанным принципом мониторинга и оценки микробиологической безопасности водоснабжения. В идеале обнаружение таких индикаторных бактерий должно означать возможное присутствие всех сопутствующих такому загрязнению патогенных агентов. Индикаторные микроорганизмы должны легко выделяться из воды, идентифицироваться и количественно определяться. При этом они должны дольше выживать и в водной среде, чем патогенные агенты, и должны быть более устойчивы к обеззараживающему действию хлора, чем патогенные. Практически какой-либо один организм не может отвечать всем этим критериям, хотя многие из них имеют место в случае колиформных организмов, особенно Е. соli – важного индикатора загрязнения воды фекалиями человека и животных. Другие организмы, удовлетворяющие некоторым из этих требований, хотя и не в такой степени, как колиформные организмы, также могут в некоторых случаях использоваться в качестве дополнительных показателей фекального загрязнения.
   К колифрмным организмам, используемым в качестве индикаторов фекального загрязнения, относят общие колиформы, в том числе и Е. соli, фекальные стрептококки, сульфитредуцирующие спороносные клостридии, особенно, клостридия перфрингенс. Есть и другие анаэробные бактерии (например, бифидобактерии), в больших количествах встречающиеся в фекалиях. Однако рутинные методы их обнаружения слишком сложны и длительны. Поэтому специалисты в области водной бактериологии остановились на простых, доступных и достоверных методах количественного обнаружения индикаторных колиформных микроорганизмов, используя в работе титрационный метод (серийных разведений) или метод мембранных фильтров.
   Колиформные организмы уже давно считаются удобными микробными индикаторами качества питьевой воды, главным образом потому, что легко поддаются обнаружению и количественному определению. Это грамотрицательные палочки, они обладают способностью ферментировать лактозу при 35—37 °С (общие колиформы) и при 44—44,5 °С (термотолерантные колиформы) до кислоты и газа, оксидазоотрицательные, не образуют спор и включают виды Е. соli, цитробактер, энтеробактер, клебсиеллу.
   Общие колиформные бактерии
   Общие колиформные бактерии согласно СанПиНу должны отсутствовать в 100 мл питьевой воды.
   Общие колиформные бактерии не должны присутствовать в подаваемой потребителю очищенной питьевой воде, а их наличие свидетельствует о недостаточной очистке или вторичном загрязнении после очистки. В этом смысле тест на колиформы может использоваться как показатель эффективности очистки. Известно, что цисты некоторых паразитов более устойчивы к обеззараживанию, чем колиформные организмы. В связи с этим отсутствие колиформных организмов в поверхностных водах не всегда свидетельствует, что они не содержат цист лямблий, амеб и других паразитов.
   Термотолерантные фекальные колиформы
   Термотолерантные фекальные колиформы согласно СанПиНу должны отсутствовать в 100 мл исследуемой питьевой воды.
   Термотолерантные фекальные колиформы представляют собой микроорганизмы, способные ферментировать лактозу при 44 °С или 44,5 °С и включающие род эшерихия и в меньшей степени отдельные штаммы цитробактер, энтеробактер и клебсиеллу. Из этих организмов только Е. соli специфично фекального происхождения, причем она всегда присутствует в больших количествах в экскрементах человека и животных и редко обнаруживается в воде и почве, не подвергшихся фекальному загрязнению. Считается, что обнаружение и идентификация Е. соli дает достаточную информацию для установления фекальной природы загрязнения. Вторичный рост фекальных колиформ в распределительной сети маловероятен, за исключением тех случаев, когда присутствует достаточное количество питательных веществ (БПК больше 14 мг/л), температура воды выше 13 °С, а свободный остаточный хлор отсутствует. Этот тест отсекает сапрофитную микрофлору.
   Другие индикаторы фекального загрязнения
   В сомнительных случаях, особенно когда обнаруживается присутствие колиформных организмов в отсутствие фекальных колиформ и Е. соli, для подтверждения фекальной природы загрязнения могут быть использованы другие индикаторные микроорганизмы. Эти вторичные индикаторные микроорганизмы включают фекальные стрептококки и сульфидирующие клостридии, особенно клостридию перфрингенс.
   Фекальные стрептококки
   Присутствие фекальных стрептококков в воде обычно указывает на фекальное загрязнение. Этот термин относится к тем стрептококкам, которые обычно присутствуют в экскрементах человека и животных. Эти штаммы редко размножаются в загрязненной воде, они могут быть несколько более устойчивыми к обеззараживанию, чем колиформные микроорганизмы. Отношение фекальных колиформ к фекальному стрептококку более чем 3 : 1 характерно для испражнений человека, а менее 0,7 : 1 – для испражнений животных. Это может быть полезным при установлении источника фекального загрязнения в случае сильно загрязненных источников. Фекальные стрептококки, кроме того, могут быть использованы для подтверждения достоверности сомнительных результатов теста на колиформы, особенно в отсутствие фекальных колиформ. Фекальные стрептококки могут быть полезны и при контроле качества воды в распределительной системе после ремонта водопроводной сети.
   Сульфитредуцирующие клостридии
   Это анаэробные спорообразующие организмы, наиболее характерным из которых является клостридиум перфрингенс, обычно присутствуют в фекалиях, хотя и в значительно меньших количествах, чем Е. соli. Споры клостридий выживают в водной среде дольше, чем организмы колиформной группы, и они устойчивы к обеззараживанию при неадекватных концентрациях этого агента, времени контакта или значений рН. Таким образом, их персистентность в подвергшейся обеззараживанию воде может свидетельствовать о дефектах очистки и длительности фекального загрязнения. Споры сульфитредуцирующих клостридий по СанПиНу должны отсутствовать при исследовании 20 мл питьевой воды.
   Общее микробное число
   Общее микробное число отражает общий уровень содержания бактерий в воде, а не только тех из них, которые образуют колонии, видимые невооруженным глазом на питательных средах при определенных условиях культивирования. Эти данные не имеют большого значения для обнаружения фекального загрязнения и не должны считаться важным показателем при оценке безопасности систем питьевого водоснабжения, хотя внезапное увеличение числа колоний при анализе воды из подземного водоисточника может служить ранним сигналом загрязнения водоносного горизонта.
   Общее микробное число полезно при оценке эффективности процессов водоочистки, особенно коагуляции, фильтрации и обеззараживания, при этом основная задача заключается в поддержании их количества в воде на возможно более низком уровне. Общее микробное число может быть использовано также для оценки незагрязненности и целостности распределительной сети и пригодности воды для производства пищевых продуктов и напитков, где число микроорганизмов должно быть низким для сведения до минимума риска порчи. Ценность данного метода заключается в возможности сравнения результатов при исследовании регулярно отбираемых проб из одной и той же системы водоснабжения для обнаружения отклонений.
   Общее микробное число, т. е. число колоний бактерий в 1 мл питьевой воды, не должно быть более 50.
   Вирусологические показатели качества воды
   К вирусам, вызывающим особое беспокойство в связи с передачей водным путем инфекционных заболеваний, относятся главным образом те, которые размножаются в кишечнике и в больших количествах (десятки миллиардов на 1 г кала) выделяются с фекалиями зараженных людей. Хотя репликации вирусов вне организма не происходит, энтеровирусы обладают способностью к выживанию во внешней среде в течение нескольких дней и месяцев. Особенно много энтеровирусов в сточных водах. При водозаборе на водоочистных сооружениях в воде обнаруживают до 43 вирусных частиц на 1 л.
   Высокая выживаемость вирусов в воде и незначительная заражающая доза для человека приводят к эпидемическим вспышкам вирусного гепатита и гастроэнтерита, но через источники водоснабжения, а не питьевую воду. Однако потенциально такая возможность сохраняется.
   Вопрос о количественной оценке допустимого содержания вирусов в воде очень сложен. Сложно и определение вирусов в воде, особенно питьевой, так как возможен риск случайного загрязнения воды при отборе проб. В Российской Федерации согласно СанПиНу оценку вирусного загрязнения (определение содержания колифагов) проводят по подсчету числа бляшкообразующих единиц, создаваемых колифагом. Прямое определение вирусов очень сложно. Колифаги присутствуют совместно с кишечными вирусами. Количество фагов обычно больше, чем вирусных частиц. По своей величине колифаги и вирусы очень близки, что важно для процесса фильтрации. Согласно СанПиНу в 100 мл пробы бляшкообразующих единиц быть не должно.
   Простейшие
   Из всех известных простейших патогенными для человека, передающимися через воду, могут быть возбудители амебиаза (амебной дизентерии), лямблиоза и балантидиаза (инфузории). Однако через питьевую воду возникновение данных инфекций происходит редко, лишь при попадании в нее сточных вод. Наиболее опасен человек, являющийся источником-носителем резервуара цист лямблий. Попадая в сточные и питьевые воды, а затем опять в организм человека, они могут вызвать лямблиоз, протекающий с хроническими диареями. Возможен смертельный исход.
   По принятому нормативу цист лямблий в питьевой воде объемом 50 л наблюдаться не должно.
   Должны отсутствовать в питьевой воде и гельминты, а также их яйца и личинки.

Безвредность воды в отношении загрязнений, нормируемых по санитарно-токсикологическим показателелям или по химическому составу

   Безвредность и опасность воды в отношении санитарно-токсикологических показателей химического состава определяется:
   1) содержанием вредных химических веществ, наиболее часто встречающихся в природных водах на территории РФ;
   2) содержанием вредных веществ, образующихся в процессе ее водообработки в системе водоснабжения;
   3) содержанием вредных химических веществ, поступающих в источники в результате хозяйственной деятельности человека.
   Имеется ряд химических веществ, присутствие которых в питьевой воде в концентрациях, превышающих определенный уровень, может представлять определенную опасность для здоровья. Их допустимые уровни должны быть определены исходя из суточного потребления воды (2,5 л) человеком, весящим 70 кг.
   Все химические вещества, определяемые в питьевой воде, не только имеют установленную ПДК, но и относятся к определенному классу опасности.
   Под ПДК понимают максимальную концентрацию, при которой вещество не оказывает прямого или опосредованного влияния на состояние здоровья человека (при воздействии на организм в течение всей жизни) и не ухудшает условий гигиенического водопотребления. Лимитирующим признаком вредности химического вещества в воде, по которому установлен норматив (ПДК), может быть «санитарно-токсикологический», или «органолептический». Для ряда веществ в водопроводной воде имеются ОДУ (ориентировочные допустимые уровни) веществ в водопроводной воде, разработанные на основе расчетных или экспериментальных методов прогноза точности.
   Классы опасности веществ делят на:
   1 класс – чрезвычайно опасные;
   2 класс – высокоопасные;
   3 класс – опасные;
   4 класс – умеренно опасные.
   Безвредность химического состава питьевой воды определяется отсутствием содержания в ней опасных для здоровья людей веществ в концентрациях, превышающих ПДК.
   При обнаружении в питьевой воде нескольких химических веществ, нормированных по токсикологическому признаку вредности и относящихся к 1-му и 2-му (чрезвычайно и высокоопасные) классу опасности, исключая РВ, сумма отношений обнаруженных концентраций каждого из них к их максимально допустимому содержанию (ПДК) не должна быть более 1 для каждой группы веществ, характеризующихся более или менее однонаправленным воздействием на организм. Расчет ведется по формуле:
   (С1факт / С1доп) + (С2факт / С2доп) + … + (Сnфакт / Сnдоп) ≤ 1,
   где С1, С2, Сn– концентрации индивидуальных химических веществ;
   Сфакт – концентрации фактические;
   Сдоп – концентрации допустимые.
   Вредные вещества, образующиеся в процессе водообработки представляем в таблице 1 (см. приложение). Особое внимание следует обратить на этап хлорирования в процессе водоподготовки. Наряду с обеззараживанием, хлорирование может приводить и к насыщению хлором органических веществ с образованием продуктов гелогенезирования. Эти продукты трансформации в ряде случаев могут быть более токсичными, чем исходные, присутствующие на уровне ПДК химических веществ.

   Таблица 1. Содержание вредных веществ, образующихся в процессе ее водообработки в системе водоснабжения.

   При обеззараживании воды свободным хлором время контакта с водой должно быть не более 30 мин, связанным хлором – не более 60 мин. Общая концентрация свободного и связанного хлора не должна быть более 1,2 мг/л. Контроль содержания остаточного озона производится после камеры смещения при обеспечении времени контакта не менее 12 мин.
   Показатели радиоактивного загрязнения питьевой воды
   Безопасность воды по показателям РВ загрязнения определяется ПДУ суммарной объемной активности α– и β-излучателей, а при превышении ПДУ по этим показателям – путем оценки соответствия содержания отдельных радионуклидов нормам радиационной безопасности (НРБ): суммарная активность α-излучателей должна быть не более 0,1 Бк/л (беккереля) β-излучателей не более 1,0 Бк/л.

Органолептические показатели качества питьевой воды

   Органолептические показатели обеспечивают эстетическую потребность, свидетельствуют об эффективности очистки, могут лежать в основе причин серьезных заболеваний, связанных с хронической дегидратацией (водно-солевого баланса).
   Согласно СНиПу на воду питьвую, запах и привкус не должны превышать 2 баллов, т. е. это слабый запах и привкус, обнаруженный потребителем только в том случае, если указать на него, или сакцентрировать внимание.
   Шкала нормируемых показателей выглядит следующим образом:
   0 – не ощущается;
   1 – не определяется потребителем, но обнаруживается опытным исследователем;
   3 – заметный, вызывает неодобрение потребителя;
   4 – отчетливый, вода не пригодна для питья;
   5 – очень сильный запах или привкус.
   Цветность питьевой воды должна быть не более 20°.
   Мутность не должна быть более 2,6 ЕМФ или 1,5 мг/л.

ЛЕКЦИЯ № 5. Проблемы гигиены атмосферного воздуха. Структура, химический состав атмосферы

История и современные проблемы гигиены атмосферного воздуха

   Гигиена атмосферного воздуха является разделом коммунальной гигиены. Она занимается рассмотрением вопросов о составе земной атмосферы, природных примесях к ней и загрязнениях ее продуктами деятельности человека, о гигиеническом значении каждого из этих элементов, нормативах чистоты воздуха и мерах по его санитарной охране.
   Атмосферой называется газовая оболочка земли. Смесь газов, составляющих атмосферу, называется воздухом.
   Предметом гигиены атмосферного воздуха является лишь воздух открытых пространств. Вопрос о воздухе жилых и общественных помещений рассматривается в других разделах коммунальной гигиены, а вопрос о воздухе рабочих помещений является одним из предметов промышленной гигиены.
   Мысль о том, что воздух имеет существенное значение для жизнедеятельности человека, существовала задолго до возникновения научной медицины и гигиены. Высказывания по этому вопросу мы находим в древнейших сочинениях по медицине, в том числе у Авиценны и Гиппократа. После возникновения научной гигиены, которое относится к половине XIX столетия, вопросы гигиены атмосферного воздуха получили строго научную разработку. Они нашли свое изложение во всех крупнейших руководствах по гигиене, как у нас, так и за рубежом. Этим вопросом большое внимание уделяли такие выдающиеся гигиенисты, как Ф. Ф. Эрисман, Г. В. Хлопин, Pettenkofer.
   Нужно сказать, что этот раздел гигиены долгое время имел рудиментарный характер. В нем рассматривался преимущественно вопрос о нормальном составе атмосферы и природных примесях к ней. Быстрое развитие гигиена атмосферного воздуха получила в ХХ в. в связи с растущим загрязнением атмосферы выбросами промышленных предприятий. Проблема дыма стала одной из злободневных проблем гигиены города. Таким образом, атмосфера – это фактор окружающей среды, оказывающий постоянное, прямое и косвенное воздействие на организм человека и условия его жизни.
   В настоящее время гигиена атмосферного воздуха определяет ряд актуальных проблем, таких как:
   1) гигиена и токсикология природных загрязнений, особенно редких и тяжелых металлов;
   2) загрязнение атмосферного воздуха синтетическими продуктами: высокостабильными веществами, такими как дихлордифенилтрихлорэтан (ДДТ), производными фтор-, хлорметана – фреонами, хладонами;
   3) загрязнение атмосферного воздуха продуктами микробиологического синтеза.

Атмосфера как фактор окружающей среды. Ее структура, состав и характеристика

   В результате взаимодействия организмов между собой и окружающей средой в биосфере образуются экосистемы, которые связаны между собой обменом веществ и энергии. Важная роль в этом процессе принадлежит атмосфере, являющейся составной частью экосистем. Атмосферный воздух оказывает постоянное и непрерывное действие на организм. Это воздействие может быть прямым и косвенным. Оно связано со специфическими физическими и химическими свойствами атмосферного воздуха, который является жизненно важной средой.
   Атмосфера регулирует климат Земли, в атмосфере происходят многие явления. Атмосфера пропускает тепловое излучение, сохраняет тепло, является источником влаги, средой распространения звука, источником кислородного дыхания. Атмосфера является средой, которая воспринимает газообразные продукты обмена веществ, оказывает влияние на процессы теплообмена и теплорегуляции. Резкое изменение качества воздушной среды может отрицательно сказаться на здоровье населения, заболеваемости, рождаемости, физическом развитии, показателях работоспособности и т. д.
   Итак, Земля окружена газовой оболочкой (атмосферой). Говоря о ее структуре, следует обратить внимание на физический подход к оценке строения. Хотя имеют место и другие подходы, например физиологический, но физический универсален. Его мы и рассмотрим. По своему строению атмосфера с учетом удаления от поверхности Земли делится на тропосферу, стратосферу, мезосферу, ионосферу, экзосферу.
   Тропосфера – это наиболее плотные воздушные слои, прилегающие к земной поверхности. Ее толщина над различными широтами земного шара неодинакова: в средних широтах она составляет 10—12 км, на полюсах – 7—10 км и над экватором – 16—18 км.
   Тропосфера характеризуется вертикальными конвекционными токами воздуха, относительным постоянством химического состава воздушных масс, неустойчивостью физических свойств: колебанием температуры воздуха, влажности, давления и т. д. Эти явления обусловлены тем, что Солнце нагревает поверхность почвы, от которой нагреваются нижние слои воздуха. Вследствие этого температура воздуха с увеличением высоты снижается, что в свою очередь приводит к вертикальному перемещению воздуха, конденсации водяного пара, образованию облаков и выпадению осадков. С поднятием на высоту температура воздуха снижается в среднем на 0,6 °С на каждые 100 м высоты.
   На состоянии тропосферы отражаются все процессы, совершающиеся на земной поверхности. Поэтому в тропосфере постоянно присутствуют пыль, сажа, разнообразные токсические вещества, микроорганизмы, что особенно заметно в крупных промышленных центрах.
   Над тропосферой располагается стратосфера. Она характеризуется значительной разреженностью воздуха, ничтожной влажностью, почти полным отсутствием облаков и пыли земного происхождения. Здесь происходит горизонтальное перемещение воздушных масс, и попавшие в стратосферу загрязнения распространяются на громадные расстояния.
   В стратосфере под влиянием космического излучения и коротковолнового излучения Солнца молекулы газов воздуха, в том числе и кислорода, ионизируются и образуют молекулы озона. 60 % атмосферного озона расположено в слое от 16 до 32 км, а максимальная его концентрация определена на уровне 25 км.
   Воздушные слои, лежащие над стратосферой (80—100 км), составляют мезосферу, которая содержит себе лишь 5 % массы всей атмосферы.
   Далее следует ионосфера, верхняя граница которой подвержена колебаниям в зависимости от времени суток и года в пределах 500—1000 км. В ионосфере воздух сильно ионизирован, при этом степень ионизации и температура воздуха повышаются с увеличением высоты.
   Слой атмосферы, лежащий выше ионосферы и простирающейся до высоты 3000 км, составляет экзосферу, плотность которой почти не отличается от плотности безвоздушного космического океана. Еще выше разреженность в магнитосфере, в состав которой входят пояса радиации. По последним данным протяженность магнитосферы по высоте составляет от 2000 до 50 000 км, за верхнюю границу земной атмосферы можно принять высоту 50 000 км над поверхностью Земли. Это толщина газовой оболочки, окутывающей нашу планету.
   Общая масса атмосферы составляет 5000 трлн т. 80 % этой массы сосредоточено в тропосфере.
   Химический состав воздуха
   Воздушная сфера, составляющая земную атмосферу, представляет собой смесь газов.
   Сухой атмосферный воздух содержит 20,95 % кислорода, 78,09 % азота, 0,03 % диоксида углерода. Кроме того, в атмосферном воздухе содержатся аргон, гелий, неон, криптон, водород, ксенон и другие газы. В небольшом количестве в атмосферном воздухе присутствуют озон, оксид азота, йод, метан, водяные пары. Кроме постоянных составных частей атмосферы, в ней содержатся разнообразные загрязнения, вносимые в атмосферу производственной деятельностью человека.
   Важной составной частью атмосферного воздуха является кислород, количество которого в земной атмосфере составляет около 1,18 × 1015 т. Постоянное содержание кислорода поддерживается за счет непрерывных процессов обмена его в природе. Кислород потребляется при дыхании человека и животных, расходуется на поддержание процессов горения и окисления, а поступает в атмосферу за счет процессов фотосинтеза растений. Наземные растения и фитопланктон океанов полностью восстанавливают естественную убыль кислорода. Они ежегодно выбрасывают в атмосферу 0,5 × 106 млн т кислорода. Источником образования кислорода является также фотохимическое разложение водяных паров в верхних слоях атмосферы под влиянием УФ-излучения Солнца. Этот процесс играл главную роль в генерации кислорода до возникновения жизни на Земле. В дальнейшем основная роль в этом отношении перешла к растениям.
   В результате интенсивного перемешивания воздушных масс концентрация кислорода в воздухе промышленных городов и сельских населенных мест остается практически постоянной.
   Биологическая активность кислорода зависит от его парциального давления. Благодаря разности парциального давления кислород поступает в организм и транспортируется к клеткам. При падении парциального давления кислорода могут развиваться явления гипоксии, что наблюдается при подъеме на высоту. Критическим уровнем является парциальное давление кислорода ниже 110 мм рт. ст. Падение парциального давления кислорода ниже 50—60 мм рт. ст. обычно несовместимо с жизнью. В то же время повышение парциального давления кислорода до 600 мм рт. ст. (гипероксия) также ведет к развитию патологических процессов в организме, уменьшению жизненной емкости легких, развитию отека легких и пневмонии.
   Под влиянием коротковолнового УФ-излучения с длиной волны менее 200 нм молекулы кислорода диссоциируют с образованием атомарного кислорода. Вновь образованные атомы кислорода присоединяются к нейтральной молекуле, образуя озон. Одновременно с образованием озона происходит его распад. Общебиологическое значение озона велико, он поглощает коротковолновое УФ-излучение Солнца, оказывающее губительное действие на биологические объекты. Одновременно озон поглощает длинноволновое ИК-излучение, исходящее от Земли, и тем самым предотвращает чрезмерное охлаждение ее поверхности.
   Концентрации озона неравномерно распределяются по высоте. Наибольшее его количество отмечается на уровне 20—30 км от поверхности Земли. С приближением к поверхности Земли концентрации озона уменьшаются вследствие снижения интенсивности УФ-излучения и ослабления процессов синтеза озона. Концентрации озона непостоянны и колеблются от 20 × 10-6 до 60 × 10-6%. Общая масса его в атмосфере составляет 3,5 млрд. т. Отмечено, что весной концентрация озона выше, чем осенью. Озон обладает окислительными способностями, поэтому в загрязненном воздухе городов его концентрации ниже, чем в воздухе сельской местности. В связи с этим озон остается важным показателем чистоты воздуха.
   Азот по количественному содержанию является наиболее существенной составной частью атмосферного воздуха. Это инертный газ. В атмосфере азота невозможна жизнь. Азот воздуха усваивается азотфиксирующими бактериями почвы, синезелеными водорослями, под влиянием электрических разрядов превращается в оксиды азота, которые, выпадая с атмосферными осадками, обогащают почву солями азотистой и азотной кислот. Соли азотной кислоты служат для синтеза белка.
   Также азот выделяется в атмосферу. Свободный азот образуется при процессах горения древесины, угля, нефти, небольшое количество его образуется при разложении органических соединений.
   Таким образом, в природе происходит непрерывный круговорот азота, в результате которого азот атмосферы превращается в органические соединения, восстанавливается и поступает в атмосферу, затем вновь связывается биологическими объектами.
   Азот необходим как разбавитель кислорода, поскольку дыхание чистым кислородом приводит к необратимым изменениям в организме. Однако повышение содержания азота во вдыхаемом воздухе способствует наступлению гипоксии вследствие снижения парциального давления кислорода. При увеличении парциального давления азота в воздухе до 93 % наступает смерть.
   Важным составным элементом атмосферного воздуха является диоксид углерода – углекислый газ (СО2). В природе СО2 находится в свободном и связанном состояниях в количестве 146 млрд т, из них в атмосферном воздухе содержится лишь 1,8 % от его общего количества. Основная масса его (до 70 %) находится в растворенном состоянии в воде морей и океанов. В состав некоторых минеральных соединений, известняков и доломитов входит около 22 % общего количества СО2. Остальное количество приходится на животный и растительный мир, каменный уголь, нефть и гумус.
   В природных условиях происходят непрерывные процессы выделения и поглощения СО2. В атмосферу он выделяется за счет дыхания человека и животных, процессов горения, гниения и брожения, при промышленном обжиге известняков и доломитов. Одновременно в природе идут процессы ассимиляции углекислого газа, который поглощается растениями в процессе фотосинтеза. Процессы образования и ассимиляции СО2 взаимосвязаны, благодаря чему содержание СО2 в атмосферном воздухе относительно постоянно и составляет 0,03 %.
   За последнее время отмечается увеличение его концентраций в воздухе промышленных городов в результате интенсивности загрязнения продуктами сгорания топлива. Поэтому среднегодовое содержание СО2 в воздухе городов может повышаться до 0,037 %. В литературе обсуждается вопрос о роли СО2 в создании парникового эффекта, приводящего к повышению температуры приземного воздуха.
   СО2 играет существенную роль в жизнедеятельности человека и животных, являясь физиологическим возбудителем дыхательного центра. При вдыхании СО2 в больших концентрациях происходит нарушение окислительно-восстановительных процессов в организме. При увеличении его содержания во вдыхаемом воздухе до 4 % отмечаются головная боль, шум в ушах, сердцебиение, возбужденное состояние, при 8 % наступает смерть.

ЛЕКЦИЯ № 6. Атмосферные загрязнения, их гигиеническая характеристика

Атмосферные загрязнения и их классификация. Источники атмосферных загрязнений. Влияние атмосферных загрязнений на здоровое население

   Загрязнение окружающей среды, и в особенности воздуха, выбросами промышленных предприятий, автомобильного транспорта вызывает в последние годы все большее беспокойство во многих странах. В атмосферный воздух ежегодно выбрасывается миллионы тонн загрязнений: 300 млн т – СО; 150 млн т – SO2, 100 млн т – взвешенных веществ. По оценкам экспертов ООН, в атмосферу Европы, США, Канады ежегодно выбрасывается около 100 млн т одних только соединений серы. Значительная часть этих выбросов, соединяясь в атмосфере с водяными парами, выпадает затем на землю в виде так называемых кислотных дождей. Причем эти вредные и для человека, и для природы выбросы могут перемещаться в воздушных потоках на громадные расстояния. Так, например, установлено, что выбросы промышленных предприятий Германии, Англии переносятся на расстояния более 1000 км и выпадают на территории скандинавских стран.
   Под атмосферными загрязнениями мы условно понимаем те примеси к атмосферному воздуху, которые образуются не в результате стихийных процессов природы, а в результате деятельности человека. В процессе своей производственной деятельности человеческое общество подвергает естественные природные тела специальной обработке – механической, физической, химической, биологической, в результате чего в атмосферный воздух поступает большое количество разнообразных веществ, находящихся в состоянии газов, паров или гетерогенных дисперсных систем – пыли, дыма, тумана и т. п. Атмосферные загрязнения разделяются на 2 группы:
   1) земные;
   2) внеземные.
   Земные делятся на естественные и искусственные. Естественные загрязнения представлены континентальными и морскими. Морские – это морская пыль и другие выделения Мирового океана. Континентальные загрязнения делятся на вещества органической и неорганической природы. Неорганические представлены продуктами вулканической деятельности и образующимися в процессе коррозии почвы. Органические загрязнения могут быть животного и растительного происхождения. Органическими загрязнениями растительного происхождения являются пыльца, продукты измельчения растений.
   Однако искусственные загрязнения антропогенного происхождения в настоящее время приобрели приоритетный характер. Они делятся на радиоактивные и нерадиоактивные. Радиоактивные могут поступать в атмосферный воздух при их добыче, транспортировке и переработке. Ядерные взрывы также являются источником загрязнений. Аварии на атомных электростанциях, как мы знаем, могут привести к катастрофе. Но эти вопросы рассматривает радиационная гигиена.
   Нерадиоактивные, или прочие, загрязнения – тема сегодняшней лекции. Они представляют в настоящее время экологическую проблему. Выхлопные газы автотранспорта, составляющие около половины атмосферных загрязнений антропогенного происхождения, образуются из выбросов двигателя и картера автомашины, продуктов износа механических частей, покрышек и дорожного покрытия. Мировой автопарк насчитывает многие сотни миллионов машин, сжигающих огромное количество топлива – ценных нефтепродуктов и одновременно наносящих ощутимый вред окружающей среде.
   В состав выхлопных газов, помимо азота, кислорода, углекислого газа и воды, входят такие вредные компоненты: окись углерода, углеводороды, окислы азота и серы, а также твердые частицы. Состав отработанных газов зависит от рода применяемого топлива, присадок и масел, режимов работы двигателя, его технического состояния, условий движения автомобиля и др. Токсичность отработанных газов карбюраторных двигателей обуславливается главным образом содержанием окиси углерода и окислов азота, а дизельных двигателей – окислами азота и сажей. К числу вредных компонентов относятся и твердые выбросы, содержащие свинец и сажу, на поверхности которой адсорбируются циклические углеводороды, ряд которых обладает канцерогенными свойствами.
   Закономерности распространения в окружающей среде твердых выбросов отличаются от закономерностей распространения газообразных продуктов. Крупные фракции (> 1 мм), оседая поблизости от центра эмиссии на поверхности почвы и растений, накапливаются в верхнем слое почвы, мелкие частицы (< 1 мм) образуют аэрозоли и распространяются воздушными массами на большие расстояния.
   Двигаясь со скоростью 80—90 км/ч, средний автомобиль превращает в углекислый газ столько же кислорода, сколько 300—350 человек. Но дело не только в этом. Годовой выхлоп одного автомобиля – это в среднем 800 кг окиси углерода, 40 кг окислов азота и более 200 кг различных углеводородов. В этом наборе окись углерода наиболее коварна. Легковой автомобиль с двигателем 50 л. с. выбрасывает в атмосферу 60 л оксида углерода в минуту.
   Токсичность оксида углерода обусловлена высоким сродством к гемоглобину, в 300 раз большим, чем кислорода. В нормальных условиях в крови человека находится в среднем 0,5 % карбоксигемоглобина. Содержание карбоксигемоглобина более 2 % считается вредным для здоровья человека. Существует хроническое и острое отравление оксидом углерода. Острое отравление часто отмечается в гаражах автолюбителей. Действие оксида углерода усиливается в присутствии углеводородов в выхлопных газах, которые также являются канцерогенами (циклические углеводороды, 3,4 – бензпирен), алифатические углеводороды обладают раздражающим слизистые действием (слезоточивый смог). Содержание углеводородов на перекрестках у светофоров в 3 раза больше, чем в середине квартала.
   В условиях высокого давления и температуры (что имеет место в двигателях внутреннего сгорания) образуются окислы азота (NO)n. Они являются метгемоглобинобразователями и обладают раздражающим действием. Под воздействием УФ-излучения (NO)n подвергаются фотохимическим превращениям. На каждом километре пути легковой автомобиль выделяет около 10 г окислов азота. Окислы азота и озон – окислители, вступая в реакции с органическими веществами атмосферы, образуют фотооксиданты – ПАН (пероксиацилнитраты) – белый смог. Смог появляется в солнечные дни, после полудня, при большом скоплении автомобилей, когда концентрация ПАН достигает 0,21 мг/л. ПАН обладают метгемоглобинобразующей активностью. В первую очередь страдают дети и пожилые люди. В ряде стран при таких обстоятельствах рекомендуется пользоваться приспособлениями для защиты органов дыхания.
   При использовании этилированного бензина автомобильный двигатель выбрасывает соединения свинца. Свинец особенно опасен тем, что он способен накапливаться как во внешней среде, так и в организме человека. При хроническом отравлении свинцом он накапливается в костях в виде трехосновного фосфата. При определенных условиях (травмах, стрессе, нервном потрясении, инфекции и т. п.) происходит мобилизация свинца из его депо: он переходит в растворимую двухосновную соль и появляется в больших концентрациях в крови, вызывая тяжелое отравление.
   Основными симптомами хронического отравления свинцом являются свинцовая кайма на деснах (его соединение с уксусной кислотой), свинцовый цвет кожи (золотисто-серая окраска), базофильная зернистость эритроцитов, гематопорфирин в моче, повышенное выведение свинца с мочой, изменения со стороны центральной нервной системы и желудочно-кишечного тракта (свинцовый колит).
   В 1 л бензина может содержаться около 1 г тетраэтилсвинца, который разрушается и выбрасывается в виде соединений свинца. В выбросах дизельного транспорта свинец отсутствует. Свинец накапливается в придорожной пыли, растениях, грибах и т. п.
   Уровень загазованности магистралей и прилежащих к ним территорий зависит от интенсивности движения автомобилей, ширины и рельефа улицы, скорости ветра, доли грузового транспорта, автобусов в общем потоке и других факторов.
   Второе место по объему выбросов в атмосферу занимают промышленные предприятия. Среди них наибольшую значимость имеют предприятия черной и цветной металлургии, тепловые электростанции, предприятия нефтехимии, сжигание отходов – полимеров.
   Таким образом, технология горения и сжигания особенно твердого и жидкого топлива представляет особую опасность для атмосферы.
   В течение нескольких столетий увеличивались проблемы, связанные с загрязнением атмосферного воздуха продуктами сжигания топлива, наибольшим проявлением которых стали густые желтые туманы, присущие пейзажам Лондона и других больших городских агломераций. Событием, которое привлекло к себе мировое внимание, явился печально известный лондонский туман в декабре 1952 г., который продолжался несколько дней и унес 4000 жизней, так как имел чрезвычайно высокую концентрацию дыма, двуокиси серы и других загрязнений.
   Наиболее опасными для всего населения (в отличие от профессиональных групп) загрязнителями являются дым и сернистый газ, которые образуются в результате сгорания угля и нефти при производственных процессах или в отопительных системах. Термин «дым» в основном относится к углеродсодержащим соединениям, образующимся при неполном сгорании топлива, главным источником которых до недавнего времени был уголь.
   Важным фактором загрязнения атмосферного воздуха является в условиях города двуокись серы, образующаяся при сгорании любого топлива, хотя содержание в нем серы зависит от его вида. Высокосернистые угли или мазуты дают особенно богатые сернистым газом выбросы. Миллионы тонн окислов серы, выбрасываемых в атмосферу, и превращают выпадающие дожди в слабый (а иногда не очень слабый) раствор кислот – «кислотный» дождь. Установлено, что кислотные дожди снижают устойчивость человеческого организма к простудным заболеваниям, ускоряют коррозию конструкций из стали, никеля, меди, разрушают песчаник, мрамор и известняк, нанося непоправимый ущерб зданиям, памятникам культуры и старины.
   Предприятия металлургической, химической цементной промышленности выбрасывают в атмосферу огромное количество пыли, сернистых и других вредных газов, выделяющихся при различных технических производственных процессах.
   Черная металлургия, процессы выплавки чугуна и переработки его в сталь сопровождаются выбросом в атмосферу различных газов. Выброс пыли в расчете на 1 т передельного чугуна составляет 4,5 кг, сернистого газа – 2,7 кг и марганца 0,1—0,6 кг. Вместе с доменным газом в атмосферу выбрасываются в небольших количествах также соединения мышьяка, фосфора, сурьмы, свинца, пары ртути и редких металлов, цианистый водород и смолистые вещества. Агломерационные фабрики – источники загрязнения воздуха сернистым газом. Загрязнение воздуха пылью при коксовании углей сопряжено с подготовкой шихты и загрузкой ее в коксовые печи, с выгрузкой кокса.
   Цветная металлургия является источником загрязнений атмосферного воздуха пылью и газами. Выбросы цветной металлургии содержат в себе токсические пылевидные вещества, мышьяк, свинец и другие, что придает им особую опасность. При получении металлического алюминия путем электролиза с отходящими газами в атмосферный воздух выделяется значительное количество газообразных и пылевидных фтористых соединений. При получении 1 т алюминия в зависимости от типа и мощности электролиза расходуется 38—47 кг фтора, при этом около 65 % его попадает в атмосферный воздух.
   Выбросы нефтедобывающей и нефтеперерабатывающей промышленности содержат большое количество углеводородов, сероводорода и других газов. Выброс в атмосферу вредных веществ на нефтеперерабатывающих заводах происходит главным образом вследствие недостаточной герметизации оборудования.
   В результате загрязнения атмосферы увеличивается заболеваемость населения, особенно крайних возрастных групп, увеличивается смертность. Отмечается так называемый синдром неспецифической резистентности, когда снижается иммунобиологическая резистентность, извращаются метаболические реакции, нарушаются ферментные системы – происходит ферментная дезорганизация, связанная с повреждением мембранных структур, митохондрий, лизосомов, микросомов. Установлен патогенетический аспект влияния загрязнения атмосферного воздуха – системный мембраноповреждающий эффект основных клеточных структур. Понимание этого процесса позволяет определить систему профилактических мероприятий.
   Следует отметить, что химическое загрязнение атмосферного воздуха повышает чувствительность организма к воздействию неблагоприятных факторов, в том числе инфекции, особенно у детей при нерациональном питании.

Закономерности поведения атмосферных загрязнений в приземном слое

   Поведение атмосферных загрязнений в приземном слое зависит от различных факторов: величины выбросов, направления и скорости ветра, температурного градиента, барометрического давления, влажности воздуха, расстояния до источника выброса и высоты трубы, ландшафта местности, а также от физико-химических свойств загрязнителей.
   Изменение температуры воздуха на каждые 100 м высоты, выраженное в градусах, называется вертикальным температурным градиентом, его величина в основном колеблется от температуры воздуха. Летом температурный градиент колеблется в пределах 1 °С, в холодное время года он снижается до десятых долей градуса, а в январе и феврале падает до отрицательных величин. Это последнее явление, т. е. извращение температурного градиента, когда температура воздуха нарастает, носит название температурной инверсии. Чем выше температурный градиент, тем сильнее вертикальные токи и перемешивание дыма с воздухом. Иными словами, угол раскрытия дымового факела увеличивается с увеличением температурного градиента. При температурной инверсии дым не может подниматься вверх и распределяется в приземном слое.
   Наиболее высокие концентрации загрязнений наблюдаются при низкой температуре. Область распространения зимних инверсий совпадает с областью распространения антициклонов, поэтому при антициклонической погоде обычно наблюдаются высокие концентрации дыма. Помимо температурной инверсии, антициклон характеризуется малыми скоростями ветра, что также ведет к повышению концентрации загрязнений в атмосфере.
   Антициклоны возникают, как известно, в областях высоких барометрических давлений. Этим следует объяснить наличие корреляции между загрязнением атмосферы и высотой барометрического давления.
   Влажность также способствует увеличению концентраций загрязнений в атмосферном воздухе, но это имеет значение не для всех газов. Так, концентрация хлора падает с увеличением влажности.
   В отношении физико-химических свойств загрязнений следует отметить особую опасность соединений, имеющих высокую персистентность (ДДТ, фреонов).
   Наряду с загрязнением атмосферного воздуха в природе протекают процессы самоочищения, но они происходят крайне медленно. Самоочищению воздуха способствуют физические, физико-химические и химические процессы, происходящие в атмосфере: разбавление, седиментация, атмосферные осадки, роль зеленых насаждений, химическая нейтрализация и т. д.
   Более эффективные мероприятия проводятся в результате санитарной охраны атмосферного воздуха.

ЛЕКЦИЯ № 7. Санитарная охрана атмосферного воздуха

Гигиеническое нормирование вредных веществ в атмосферном воздухе. Понятие о предельно допустимых концентрациях вредных веществ в атмосферном воздухе, их обоснование

   Развитие науки и техники и связанный с этим резкий подъем промышленного производства приводят, как мы отметили в предыдущих лекциях, к загрязнению окружающей среды и в первую очередь – воздуха. Тысячи химических веществ (и число их постоянно растет) используются и выпускаются промышленностью. Многие из них не разлагаются на более простые безвредные продукты, а накапливаются в атмосфере и преобразуются в еще более токсичные продукты. Большое число соединений, в особенности продукты неполного сгорания, попадают в атмосферу, включаются в происходящие в ней процессы, и подобно бумерангу возвращаются к человеку, проникая через дыхательные пути.
   Для эффективного решения ряда проблем, связанных с охраной окружающей среды, необходимо широкое международное сотрудничество. Это, в частности, относится и к проблеме распространения атмосферных загрязнений на большие расстояния, ведь воздушные массы не знают границ.
   В настоящее время существует два подхода в методике санитарной охраны атмосферного воздуха.
   1. Достижение наилучших практических результатов от проведения мероприятий. Основа их – совершенная технология производства. Это наиболее эффективный, но в то же время дорогостоящий подход.
   2. Управление качеством воздушной среды. Сущность его состоит в гигиеническом нормировании, что и является в настоящее время основой охраны атмосферного воздуха.
   Этот подход имеет несколько концепций. Одна концепция заключается в нормировании вредных компонентов в сырье и является неудачной, так как не обеспечивает уровня безопасных концентраций в атмосферном воздухе. Другая – установление предельно допустимого выброса (ПДВ) для каждого предприятия и на основе ПДВ – стабилизация предельно-допустимых концентраций (ПДК) загрязнений. Это на сегодняшний день является одним из наиболее действенных средств охраны воздуха.
   ПДК – это концентрации, которые не оказывают на человека ни прямого, ни косвенного вредного и неприятного действия, не снижают его трудоспособности, не влияют отрицательно на его самочувствие и настроение.
   Однако следует иметь в виду, что не только превышение ПДВ, но даже соблюдение его величины не всегда может рассматриваться как оптимум. Установленные в настоящее время значения ПДК, как правило, обеспечивают безопасность окружающей среды для здоровья исходя из научных знаний сегодняшнего дня. Анализ же изменений значений ПДК за последние годы свидетельствует об их относительности – они пересматривались в большинстве случаев в сторону уменьшения. Таким образом, представление об их полной безвредности следует считать условным.
   Основные принципы гигиенического нормирования вредных веществ в атмосферном воздухе сформулированы В. А. Рязановым. ПДК по нормативам должна быть:
   1) ниже порога острого и хронического воздействия на человека, животных и растительность;
   2) ниже порога запаха и раздражающего действия на слизистые оболочки глаз и дыхательных путей;
   3) значительно ниже ПДК, принятых для воздуха производственных помещений.
   Необходимо учитывать сведения о заболеваемости и жалобы населения в зоне влияния выбросов, которые
   не должны оказывать влияния на бытовые и санитарные условия жизни, а также не вызывать привыкания организма.
   ПДК служит масштабом, по которому судят, насколько существующее загрязнение превышает допустимый предел. Они дают возможность обосновать необходимость тех или иных мероприятий для санитарной охраны атмосферного воздуха и проверить эффективность этих мероприятий. В основе нормирования лежат принципы пороговости и этапности.
   ПДК загрязнений в атмосферном воздухе устанавливаются по двум показателям – максимальным разовым (ПДК м. р.) и среднесуточным – ПДК с. с. (24 ч). Наиболее важные среднесуточные концентрации, превышение которых указывает на возможное неблагоприятное токсическое действие регламентируемых веществ. Максимально разовые концентрации устанавливаются для веществ, обладающих преимущественно раздражающим или рефлекторным действием.
   В то время как в большинстве зарубежных стран для установления стандарта учитываются главным образом эпидемиологические данные о влиянии загрязнений атмосферного воздуха на здоровье населения, в нашей стране доминирует экспериментальный подход. Проведение эксперимента с точно заданными условиями не только обеспечивает большую точность полученных данных, но и позволяет устанавливать контролирующие показатели, не дожидаясь появления неблагоприятных последствий для здоровья населения.
   На первом этапе эксперимента изучаются пороговые концентрации рефлекторного действия – порог запаха и в некоторых случаях порог раздражающего действия. Эти исследования проводятся с волонтерами на специальных установках, обеспечивающих подачу в зону дыхания строго дозируемых концентраций химических соединений. В результате статистической обработки полученных результатов устанавливается пороговая величина. Эти материалы затем используются для обоснования максимально разовой ПДК.
   На втором этапе исследований изучается резорбтивное действие соединений в условиях длительных экспозиций на подопытных животных (обычно беспородных белых крысах) с целью установления среднесуточной ПДК. Хронический эксперимент в специальных затравочных камерах длится не менее 4 месяцев. Животные должны находиться в камерах круглосуточно.
   Важным моментом является выбор исследуемых концентраций. Обычно выбирают три концентрации: первая на уровне порога запаха, вторая в 3—5 раз выше и третья в 3—5 раз ниже. Если исследуемое вещество не обладает запахом, то концентрации для токсикологического эксперимента рассчитывают по формулам, опирающимся на регламентируемые гигиенические, токсикометрические показатели или на физико-химические параметры и особенности структуры вещества.
   При проведении эксперимента производится отбор тестов, адекватных механизму действия изучаемого соединения, а также интегральных тестов, характеризующих проявление защитно-приспособительных реакций. ПДК атмосферных загрязнений устанавливаются по лимитирующему показателю – по уровню концентрации, который оказался наименьшим при использовании различных тестов. В качестве пороговых принимаются концентрации, которые вызывают запах, раздражающее действие, специфические проявления или какие-нибудь другие реакции, которые могут рассматриваться как защитно-приспособительные. Большое внимание уделяется возможности появления отдаленных последствий (эмбриотропного, гонадотропного, канцерогенного, мутагенного и др.).
   Значительное распространение получили сейчас методы экспрессного регламентирования атмосферных загрязнений. Результаты краткосрочного эксперимента (1 месяц) анализируются графически на двойной логарифмической сетке, по оси ординат – время наступления эффектов, по оси абсцисс откладываются значения концентраций. Прямые зависимости «концентрация – время», полученные по наиболее достоверным тестам, могут иметь различные углы наклона к оси абсцисс (концентрации). Пороговые концентрации устанавливаются по прямым зависимости «концентрация – время» путем экстраполяции их на четырехмесячный срок хронического эксперимента. Таким образом могут быть установлены дифференцированные по времени значения ПДК, в том числе среднегодовые, соответствующие ПДК с. с.
   Разработанные в России ПДК и ориентировочные безопасные уровни (ОБУВ) загрязняющих веществ в атмосферном воздухе населенных мест имеют обязательный характер как элемент санитарного законодательства и используются в практике проектирования и санитарного надзора.

Мероприятия по санитарной охране атмосферного воздуха

   Мероприятия по охране атмосферного воздуха делятся на:
   1) технологические;
   2) планировочные;
   3) санитарно-технические;
   4) законодательные.
   Технологические и санитарно-технические. В эту группу входят мероприятия, которые могут быть проведены на самом предприятии в целях уменьшения выбросов и снижения концентрации пыли и газов в воздухе (так называемые безотходные технологии). Сюда относится прежде всего рационализация сжигания угля. Известно, что густой черный дым получается при неполном сгорании топлива. Именно в этих случаях в атмосферный воздух в большом количестве выбрасываются элементы угля, сажа, несгоревшие углеводороды.
   Снизить количество угля можно при рационализации устройства топок, улучшения их эксплуатации. Уменьшения загрязнения воздуха пылью и сернистым газом можно достичь обогащением угля перед сжиганием: удалением породы, дающей много пыли, а также колчедана, содержащего серу.
   Санитарно-технические мероприятия связаны с использованием очистных устройств. Это пылеотстойные камеры, фильтры, увлажняющие технологии очистки, электрофильтрация. Устройство высоких труб (100 м и выше) способствует более интенсивному рассеиванию газов. Правильный расчет и обоснование высоты трубы имеют существенное значение в защите приземных слоев атмосферы от загрязнения.
   Транспорт – конечная цель – создание экологически чистого автомобиля. В настоящее время большое внимание уделяется разработке устройств снижения токсичности – нейтрализаторов, которыми оснащаются современные автомобили. Способ каталитического преобразования продуктов сгорания заключается в том, что отработанные газы очищаются, вступая в контакт с катализатором. Одновременно происходит дожигание продуктов неполного сгорания, содержащихся в выхлопе автомобилей. Во многих городах уже используется неэтилированный бензин. Использование газа в качестве топлива для машин также является эффективным мероприятием в отношении защиты атмосферного воздуха.
   Электромобиль, солнечная энергия, водородный автомобиль – это будущее автомобилестроения.
   Планировочные мероприятия основаны на принципе функционального зонирования населенных пунктов: промзоны, селитебной зоны и т. д. Это позволяет сосредоточить опасные предприятия с учетом аэроклиматических условий и обосновать устройство обязательных разрывов между предприятиями и жилой застройкой – санитарно-защитных зон определенной ширины. В отдельных случаях санитарно-защитные зоны составляют 10—20 км. Санитарно-защитная зона или какая-либо ее часть не могут рассматриваться как резервная территория предприятия и использоваться для расширения промышленной площади. Территория санитарно-защитной зоны должна быть озеленена. Размеры санитарно-защитных зон определяются в соответствии с санитарной классификацией различных видов производств и объектов, загрязняющих своими выбросами атмосферный воздух. Санитарными нормами проектирования установлено 5 классов санитарно-защитных зон:
   I класс – 1000 м;
   II класс – 500 м;
   III класс – 300 м;
   IV класс – 100 м;
   V класс – 50 м.
   В отношении охраны атмосферы городов от выбросов автотранспорта планировочные мероприятия проводятся путем сооружения кольцевых дорог, эстакад, зеленых волн, исключения перекрестков. Принцип районной планировки является также профилактическим мероприятием – это рациональное размещение на территории городов систем утилизации отходов, аэропортов и других систем коммуникации в масштабе края, области и т. д. Это озеленение города, создание генерального плана развития города.
   Особое значение имеют законодательные мероприятия, определяющие ответственность различных организаций за охрану атмосферного воздуха.
   В настоящее время при решении вопросов охраны атмосферного воздуха руководствуются Конституцией Российской Федерации (принятой 12 декабря 1993 г.), «Основами законодательства Российской Федерации об охране здоровья граждан», Федеральными законами «О санитарно-эпидемиологическом благополучии населения» и «Об охране атмосферного воздуха».
   К числу законодательных мер относится установление ПДК и ОБУВ загрязняющих веществ в атмосферном воздухе. В настоящее время в России установлено 656 ПДК и 1519 ОБУВ для веществ, загрязняющих атмосферный воздух.
   Мероприятия, направленные на предотвращение неблагоприятного воздействия загрязнения атмосферного воздуха на здоровье населения и устанавливающие обязательные гигиенические требования к обеспечению качества атмосферного воздуха населенных мест и соблюдению гигиенических нормативов при размещении, проектировании, строительстве, реконструкции (техническом перевооружении) и эксплуатации объектов, а также при разработке всех стадий градостроительной документации, проводятся целенаправленно на основании СанПиН 2.1.6.1032-01 «Гигиенические требования к обеспечению качества атмосферного воздуха населенных мест».

ЛЕКЦИЯ № 8. Экология питания

Основные направления и проблемы экологии питания

   В экологии питания выделяется несколько направлений. Одно из этих направлений связывается с решением проблем голода на нашей планете. По данным Продовольственного комитета и Всемирной организации здравоохранения ООН на планете ежегодно умирает от голода в среднем около 10 млн человек. Решение проблемы голода на нашей планете осуществляется:
   1) путем увеличения посевных площадей;
   2) путем интенсификации сельскохозяйственного производства;
   3) путем использования химических, биологических и других средств борьбы с вредителями и болезнями сельскохозяйственных культур.
   Решение проблем голода, связанных с увеличением посевных площадей, имеет определенные последствия. При распашке целинных земель в Казахстане на территории СССР, в США, Канаде в первые годы отмечался интенсивный рост сорных растений (в частности, пырея). Это резко сказывалось на возделывании сельскохозяйственных культур. Для борьбы с пыреем использовалась специальная система вспахивания – система глубокой вспашки, которая имела негативные последствия. Этот способ возделывания сельскохозяйственных угодий приводит к эрозии почвы, появлению пыльных бурь и к дальнейшим экологическим последствиям. В Заволжских степях на целинных землях широко были развернуты гидромелиоративные работы, созданы системы орошения, которые привели к формированию новых агробиогеоценозов. Нужно сказать, что мелиоративные работы резко изменили экологию заволжских водных экосистем, привели к изменению гидродинамических процессов в подземных водах и имели определенные экологические последствия, связанные с особенностью распределения во внешней среде некоторых загрязнителей.
   Другое направление экологии питания связано с тем, что продукты питания в сложных экологических условиях сами являются объектом загрязнения и воздействия вредных химических веществ – ядохимикатов и пестицидов.
   Еще одним направлением экологии питания является изучение влияния алиментарного фактора, пищевых продуктов на резистентность организма.
   Одной из актуальнейших проблем современности в области гигиены питания является использование пищевых добавок.

Рациональное питание – алиментарный фактор в современных экологических условиях

   Рациональное питание имеет актуальное значение в современных экологических условиях. Задачи питания в условиях интенсивного химического загрязнения состоят в том, чтобы препятствовать накоплению в организме человека вредных химических веществ. Рациональное питание должно обеспечить ослабление негативного действия химических веществ и других вредных факторов на организм, на преимущественно поражаемые органы и системы. Рациональное питание в сложных экологических условиях должно способствовать повышению защитно-приспособительных возможностей организма человека.
   Особенно актуальны вопросы питания людей, проживающих в городских условиях, подвергающихся воздействию тяжелых металлов, электромагнитных излучений, испытывающих тяжелые физические нагрузки, длительное время находящихся в стрессовых ситуациях.
   Население, проживающее в зонах экологического риска, а также та часть населения, которая испытывает влияние негативных факторов в производственных условиях, должно получать специальное питание или лечебно-профилактическое питание. Это питание должно отвечать определенным требованиям.
   1. Оно должно содержать дополнительное количество витаминов. При этом речь идет не о большом количестве витаминов, а о 2—3 витаминах, и прежде всего это аскорбиновая кислота, т. е. витамин С, витамин А и тиамин.
   2. Питание должно содержать комплекс аминокислот, таких как цистеин и метионин, тирозин и фенилаланин, триптофан.
   3. Питание должно обеспечивать образование в организме таких соединений, которые обладают большой биологической активностью. Прежде всего это витамин В12, холин, пиридоксин.
   4. Питание в зонах риска и лечебно-профилактическое питание должно быть обогащено пектиновыми веществами, которые содержат метоксильные группировки, обусловливающие желеобразующий эффект и обладающие большими сорбционными свойствами, и, способствующие выведению из организма тяжелых металлов, радиоактивных веществ, аутотоксинов и других токсических соединений.
   5. В современных условиях широко используются ощелачивающие рационы, диеты за счет включения в них овощей, фруктов, молочных продуктов. Большую роль в таком питании играют повышенные концентрации магния. Установлено, что магний способствует повышению сопротивляемости организма к воздействию веществ, обладающих канцерогенными свойствами. Нужно отметить, что антиканцерогенными свойствами обладает магний не всех продуктов, а только те его формы и соединения, которые содержатся в фасоли.
   Население, проживающее в сложных экологических условиях, в городских конгломератах, нуждается в обогащении рационов пектиновыми веществами. Достаточный уровень пектинов, их доставка в организм, связывается с ежедневным потреблением около двух яблок. Высокий уровень содержания пектинов – в свекле и цитрусовых. В производственных условиях рационы работающих обогащаются свекольными или цитрусовыми пектинами.
   Населению, проживающему в зонах экологического риска, рекомендуется широко использовать продукты, содержащие большое количество такой аминокислоты, как метионин. Эта аминокислота участвует в процессах трансметилирования и обеспечивает дезинтоксикационную функцию печени. Метионин в достаточных количествах содержится в молочных и кисломолочных продуктах и твороге. Но при назначении молочной продукции необходимо учитывать особенности пищеварительной системы организма человека, переносимость молока; показано ли употребление творога. В целом суточное потребление молока должно составлять в оптимальных условиях примерно 500 мл, творога и кисломолочных продуктов – около 100 г.
   Рационы людей, подвергающихся негативному воздействию экологических факторов, целесообразно обогащать продуктами, которые содержат в своем составе альгинаты. Альгинаты, как и пектиновые вещества, способны выводить из организма аутотоксины, токсические химические вещества. Альгинаты содержатся в морских продуктах и, в частности, в водорослях, относящихся к виду спирулин. Добавки спирулина в рационе очищают организм от токсических веществ, регулируют обмен холестерина и углеводов, нормализуют микрофлору кишечника и значительно повышают устойчивость организма к воздействию различных негативных факторов окружающей среды. Нужно сказать, что действие спирулина осуществляется на уровне клеточного обмена и положительно сказывается на дезинтоксикационных процессах. При воздействии радионуклидов, таких как цезий, стронций-90, на организм человека, особенно на ту часть населения, которая находится в зоне воздействия после Чернобыльской катастрофы (там именно в основном сконцентрирован цезий), рекомендуется включать в рацион ферроцин (берлинскую лазурь) около 1 г в сутки. При этом происходит уменьшение всасывания цезия в 2 раза. Стронций-90 адсорбируется сернокислым барием – полисульмином, но его принятие может быть только однократное.
   В условиях воздействия производственных факторов рабочим должно назначаться лечебно-профилактическое питание.
   Питание населения, проживающего в крупных промышленных центрах, подвергающегося воздействию внешних факторов различной природы и страдающего различными заболеваниями, должно носить индивидуальный характер и отвечать во многом требованиям диетического питания, особенно в домашних условиях. Поэтому население должно быть знакомо с основными требованиями и положениями диетического питания в домашних условиях.

Гигиенические проблемы применения и использования пищевых добавок

   Современное питание связано с широким использованием пищевых добавок. Пищевые добавки – вещества, преднамеренно вносимые в пищевые продукты в небольших количествах с целью улучшения их внешнего вида, вкуса, аромата, консистенции или для придания им большей стойкости при хранении. Это антиокислители жиров, консерванты, антибиотики и т. д., Существуют вещества, которые могут образоваться в продуктах в результате особых способов их обработки и получения с помощью копчения, ионизирующего излучения, ультразвука, использования эндокринных препаратов при откорме животных и птиц.
   Проблема пищевых добавок чрезвычайно сложна и связана с потреблением малого количества веществ в течение длительного времени, более чем продолжительность жизни одного поколения. При этом могут отмечаться задержка веществ в организме, их накопление, что имеет значение в отношении микроэлементов. Может отмечаться суммированное действие, и прежде всего канцерогенов. Канцерогенными свойствами обладают красители, в частности нафтол желтый С, который до 1961 г. применялся во многих странах мира для подкрашивания ряда пищевых продуктов..
   Среди пищевых добавок выделяют вещества, которые обладают канцерогенным и мутагенным действием. К ним относятся полициклические углеводороды коптильного дыма, пищевые красители – нафтол желтый и ряд других азокрасителей, полимерные соединения – воск, смолы, парафин, пестициды, амарин, гормоны стероидной группы, радиоизотопы.
   Пищевые добавки могут обладать коканцерогенным действием, т. е. обладать свойствами, которые в соответствующих условиях способны усиливать действие активных канцерогенов. Такими свойствами обладают некоторые эмульгаторы – сапонины, эфиры жирных кислот, детергенты. Связь коканцерогенного, канцерогенного и мутагенного действия до конца не установлена. Не всегда канцерогенное и мутагенное действие совпадают.
   Среди пищевых добавок выделяют вещества, обладающие наиболее выраженным мутагенным действием. К ним относятся: фенолы, тяжелые металлы, мышьяк, почти все спирты, продукты распада белка, антибиотики, пурины, перекиси, лактоны.
   Кроме прямого действия, добавки могут оказывать и косвенное воздействие, возникающее в результате разрушения витаминов, белков, связывания пищевых компонентов (в частности, связывания с сернокислым ангидридом, превращения пищевых компонентов в токсические соединения, а затем нарушения переваривания пищи, антитрипсиногенного действия соевой муки), при этом ухудшается усвояемость, происходит изменение кишечной флоры.
   Пищевыми добавками занимаются Всемирная организация здравоохранения, продовольственная и аграрная комиссия ООН. В России действуют санитарное правило, специальные методические указания, инструкции. Действует такой принцип: «запрещено все, что не разрешено». Добавки строго нормируются стандартами, техническими условиями и специальными инструкциями. В России резко ограничено использование пищевых добавок, допущено к использованию 3 искусственных красителя, а в других странах (Бельгии; Дании и др.) вообще нет списка разрешенных красителей. У нас не допускается введение пищевых добавок с целью маскирования технологических дефектов или порчи пищевых продуктов. Для детей грудного возраста в нашей стране готовятся продукты без использования пищевых добавок. Государственные стандарты нормируют допустимое содержание пищевых добавок. Пищевые добавки используют в самых разных направлениях: красители для подкрашивания; консерванты предупреждают порчу пищевых продуктов; антиокислители, применяются антиоксиданты, подкисляющие и подщелачивающие вещества, эмульгаторы, вещества, улучшающие качество пищевых продуктов. Из пищевых красителей, искусственно синтезируемых, разрешено использовать только 3: татразин – желтый краситель, индигокармин – синий и амарант – красный краситель. Для них установлена допустимая суточная доза: для амаранта – до 1,5 мг, татразина – от 0 до 7,5 мг на 1 кг.
   В нашей стране качество пищевых продуктов регламентируется специальным стандартом, микробиологическими требованиями и санитарными нормами качества продовольственного сырья и пищевых продуктов. В этом стандарте дается характеристика всех пищевых добавок, всех технологий, которые связаны с производством тех или иных продуктов питания. В частности, приведен перечень различных химических соединений, используемых в производстве сахара. Для обработки инфузионных соков и сиропов это гидросульфид, гидроокись кальция, углекислый газ, поверхностно-активные вещества, пеногасители, сорбенты, ионообменные смолы, такие как КУ-2-8 и АВ-16, АВ-17-8С и иные, активированный уголь. Для фильтрации используются перлит, тканевой фильтр, для подкрашивания – ультрамарин и индигокармин. В производстве кондитерских изделий используются студнеобразователи, агар, или фурапиран, пептин, желатин. Также применяются эмульгаторы – фосфатиды, лецитин, пенообразователи – отвар мыльного корня, глициризин, химические разрыхлители – окислы натрия, углекислый аммоний, пищевые кислоты – лимонная, молочная, виннокаменная и т. д.
   В последнее время большое внимание уделяется веществам, которые образуются в процессе обработки пищевых продуктов и могут негативно воздействовать на состояние здоровья населения. Особое положение занимают так называемые трансизомеры жирных кислот (ТИЖК). ТИЖК играют существенную роль в развитии заболеваний сердечно-сосудистой системы. Проблема ТИЖК связана в основном с производством маргаринов и их использованием. Маргарины обычно делают с помощью гидрогенизации, для чего через растительные масла прогоняют под высокой температурой водород. В таком плавленом тигле некоторые молекулы жирных кислот «ломаются», становясь трансизомерами. В норме молекулы жирных кислот представляют собой цис-изомеры. Суть различия между ними состоит в пространственном расположении. Для биологических молекул это имеет фатальное значение. Например, трансизомеры, входящие в состав фермента, могут сделать его нерабочим.
   Считается, что трансизомеры ухудшают качество грудного молока кормящих женщин, увеличивают риск рождения детей с низким весом, увеличивают риск развития диабета, ухудшают иммунитет, ухудшают качество спермы, нарушают активность фермента цитохромоксидазы, играющей роль в обезвреживании канцерогенов, нарушают обмен простагландинов.
   Поэтому необходимо настороженно относиться к маргаринам и тем продуктам, которые готовятся с их использованием (картофельным чипсам и т. д.). Естественные продукты (мясо, молоко) содержат ТИЖК не более 2 %, а в кондитерских изделиях (крекерах) ТИЖК могут содержаться от 30 до 50 % от общего количества жира. В пончиках содержится 35 %, в картофельных чипсах 40 %, в картофеле фри – около 40 % ТИЖК.

Пестициды и нитраты в гигиене питания

   Весьма актуальной является проблема пестицидов или ядохимикатов и нитратов. Пестициды – синтетические химические вещества различной степени токсичности, применяемые в сельском хозяйстве для защиты растений от сорняков, вредителей и болезней, а также для стимулирования их роста. Необходимо отметить, что современное сельскохозяйственное производство невозможно без применения пестицидов. Использование пестицидов приводит к увеличению урожайности на 40 %. Однако введение в почву стойких ядохимикатов может привести к их круговороту и накоплению в организме человека. Очень широко используются ядохимикаты в Средней Азии, и их внесение в почву составляет 54 кг на 1 га, когда в США – только 1 кг на 1 га. Нерациональное использование ядохимикатов приводит к их накоплению в продуктах массового потребления. Задачами гигиенической науки в области питания являются регламентация остаточных количеств ядохимикатов в продуктах питания, контроль их содержания, а также разработка профилактических мероприятий по предупреждению хронических интоксикаций пестицидами и другими ядохимикатами.
   Для гигиенической характеристики ядохимикатов значение имеет их классификация. Они классифицируются по химической структуре, по применению, по токсиколого-гигиеническим параметрам.
   По химической структуре пестициды разделяют на хлорорганические, фосфорорганические, производные карбаматов, ртутьорганические, циансодержащие, препараты серы, мышьяка, меди.
   По применению выделяют: гербициды – для борьбы с сорняками, бактерициды – для уничтожения микроорганизмов, для уничтожения насекомых – инсектициды, для уничтожения клещей – акарициды, для уничтожения круглых червей – нематоциды, для уничтожения листьев перед уборкой урожая – дефолианты, грибков – фунгициды и т. д.
   По токсичности ядохимикаты классифицируются на сильнодействующие, высоко-, средне– и малотоксичные. Главным критерием токсичности является среднесмертельная концентрация (ЛД50) из расчета на 1 кг массы животного. Наиболее опасными являются ядохимикаты с ЛД50 менее 50 мг на кг массы тела. К высокотоксичным относятся пестициды с ЛД50 от 50 до 200 мг на 1 кг массы тела, к среднетоксичным – от 200 до 1000 мг на 1 кг и к малотоксичным веществам относятся пестициды со среднесмертельной концентрацией более 1000 мг на кг.
   Важнейшим критерием ядохимикатов является их способность к кумуляции, т. е. способность накапливаться в тканях и органах. Главным показателем этой способности является коэффициент кумуляции. К сверхкумулятивным ядохимикатам относятся те, у которых коэффициент кумуляции менее 1, пестициды с выраженными кумулятивными свойствами имеют коэффициент кумуляции от 1 до 3, а с малокумулятивными свойствами – более 5.
   Чрезвычайно важным в оценке ядохимикатов является их показатель стабильности. По стабильности ядохимикаты подразделяются: очень стойкие – сохраняются в почве более 2 лет; умеренно стойкие – до 6 месяцев; малостойкие – до 1 месяца.
   Весьма важной является проблема оценки трансформации ядохимикатов как в окружающей среде, так и в организме человека. Некоторые ядохимикаты, различные химические соединения под воздействием факторов окружающей среды или микроорганизмов, разрушаясь, превращаются в более токсичные и опасные соединения.
   Фосфорорганические ядохимикаты по характеру своего действия и по критериям кумуляции относятся к группе функциональных, т. е. они оказывают влияние на функциональные процессы, в частности вызывают нарушение синоптической передачи, влияя на активность холинэстеразы. Для хлорорганических соединений характерно влияние на структурные образования тех или иных систем, органов, тканей, т. е. они относятся к структурным ядам. Если сравнивать эти две большие группы ядохимикатов по механизму воздействия, то предпочтение следует отдать фосфорорганическим. В санитарно-токсикологическом отношении большую опасность представляют ядохимикаты, обладающие комплексом следующих свойств:
   1) высокая токсичность препарата;
   2) высокая устойчивость в окружающей среде;
   3) длительная сохраняемость в почве, воде, продуктах питания (дихлорфенилтрихлорэтан сохраняется в почве до 10 лет и более);
   4) высокая токсичность веществ, образующихся в результате распада, разрушения препарата под влиянием биологических и других факторов, вызывающих трансформацию, разрушение и превращение ядохимикатов;
   5) выраженное кумулятивное свойство препарата, способность его накапливаться в организме, системах и тканях. Высококумулятивным ядом является ДДТ, в живой ткани людей, не имеющих прямого контакта с ядохимикатами, его концентрация может достигать 5 мг и более на 1 кг веса;
   6) способы выведения из организма. Наибольшую опасность представляют ядохимикаты, которые накапливаются в молоке;
   7) высокую опасность представляют пестициды, способные образовывать стойкие масляные эмульсии.
   В гигиенических мероприятиях по предупреждению неблагоприятного воздействия пестицидов на организм человека имеет значение учет допустимых остаточных количеств толерантной дозы в продуктах с учетом допустимой суточной дозы. Для контроля за поступлением ядохимикатов учитывают продукты в рационе, а так же поступление ядохимикатов с водой и через воздух.
   Для целого ряда ядохимикатов подход к ним таков, что они вообще не должны обнаруживаться в продуктах детского питания, молоке, не должны выделяться с молоком лактирующих животных и кормящих женщин.
   Требования к ядохимикатам заключаются в том, чтобы они обладали максимальной избирательностью, не обладали бы способностью к накоплению.
   К мероприятиям по профилактике отравлений ядохимикатами относятся:
   1) полное исключение остаточного содержания пестицидов, устойчивых во внешней среде и обладающих выраженными кумулятивными свойствами;
   2) допуск в пищевых продуктах остаточного содержания пестицидов и их метаболитов в количествах, не оказывающих неблагоприятного действия;
   3) использование в сельском хозяйстве при производстве продуктов питания ядохимикатов с коротким периодом полураспада и освобождение съедобной части продукта от остаточных количеств пестицидов ко времени их товарной спелости и снятия урожая;
   4) контроль за строгим соблюдением инструкций по применению пестицидов и соблюдение сроков ожидания, обеспечивающих освобождение продуктов от остаточных количеств;
   5) осуществление контроля за содержанием остатка пестицидов в продуктах питания и недопущение превышения установленных допустимых остаточных количеств. (Недопустимы остаточные количества ядохимикатов в критериях медико-биологической безопасности пищевых продуктов, в стандартах и т. д.)
   Весьма важную гигиеническую проблему представляют нитраты. Нитраты в продуктах питания могут накапливаться в результате их возделывания. Особенно серьезную опасность в этом отношении представляют овощные культуры. С растительной пищей поступает 70 % всех нитратов. 10 % поступления нитратов связано с потреблением животной пищи и 20 % – с потреблением воды. Только 0,1 % нитратов связывается с поступлением через легкие.
   Пищевые продукты по содержанию в них нитратов можно разделить на 3 группы. К первой группе относятся пищевые продукты с содержанием в них нитратов до 10 мг на 1 кг массы – молоко, сыр, рыба, мясо, яйцо, белый сахар, вино. Ко второй группе – продукты, в которых содержание нитратов составляет от 50 до 2000 мг на 1 кг – чай, коричневый сахар. К третьей группе относятся продукты, обогащенные нитрат-ионами в процессе их обработки, –  колбасы и мясные полуфабрикаты, сыр. Колбаса может содержать до 700 мг нитратов на 1 кг.
   Поступление нитратов в организм человека связывается с их опасностью к биотрансформации. Это явление может проходить по нескольким направлениям – нитраты, восстановившись в организме человека до нитритов, вступают в крови во взаимодействие с гемоглобином крови, и происходит образование метгемоглобина, что приводит к метгемоглобинемии. Необходимо отметить, что такие состояния наблюдаются у недоношенных детей, находящихся на искусственном вскармливании из-за особенностей ферментативных систем и кишечной микрофлоры. Жизненно опасная величина образования метгемоглобина составляет 3,0—3,7 г%, т. е. уже более высокие концентрации могут привести к летальным исходам. Особенно опасно поражение гемоглобина у плода в утробе матери (так называемая зародышевая метгемоглобинемия), которая имеет большое значение в патологии новорожденных.
   Биотрансформация нитратов может идти и по другому пути. Поступая в желудок, нитраты вступают во взаимодействие с белками пищи, и происходит образование нитрозаминов, обладающих выраженными канцерогенными свойствами. Нитраты правомерно обвиняют в том, что они привели к значительному росту такой патологии, как рак желудка. Нитраты в организме не накапливаются, они выводятся с мочой и калом. Единственным возможным источником поступления, связанным с их накоплением в организме человека, является слюна. В слюне нитраты накапливаются, и идет процесс восстановления: 20 % нитратов восстанавливается в слюне. Весьма значительно содержание нитратов в петрушке, сельдерее, ранней капуте, а также тех продуктах растительного происхождения, которые выращивали в закрытом грунте. Нужно отметить, что в картофеле 25 % всех нитратов содержится в сердцевине, т. е. больше, чем в других его частях, в моркови то же самое – в сердцевине и стебле. В свекле содержание нитратов отличается содержанием их в корневой системе, в огурцах от верхушки к основанию содержание их возрастает. В хвостовой части огурца содержится 25 % нитратов. В листьях сельдерея содержится 50 % (больше, чем в стеблях). В капусте нитраты скапливаются в основном в кочерыжке и в листьях.
   В профилактике негативного действия нитратов имеет огромное значение технология обработки продуктов. При отваривании нитраты уходят в отвар. Возможно удаление нитратов путем механической обработки с учетом их распределения в продуктах питания. Для картофеля наиболее эффективным способом извлечения нитратов является вымачивание, солевые растворы способствуют снижению содержания нитратов. На 93 % удаляются нитраты при отваривании овощей. Негативное действие нитратов можно предотвращать путем их нейтрализации. Такими свойствами обладают аскорбиновая и фолиевая кислоты. Изменение рН среды в желудке у ребенка более 4 препятствует биотрансформации нитратов. У детей кислотность содержимого желудка приближается к нейтральной, а преобразования нитратов становятся опасными при рН = 5. При нормировании суммарной нагрузки нитратов на организм учитывают их поступление с продуктами питания, водой и воздухом. Суммарная нагрузка для взрослого человека на 1 кг массы составляет 4,8 мг, т. е. исходя из среднестатистической массы тела взрослого человека суточная нагрузка составляет 300—325 мг. Для детей суточная нагрузка не должна превышать 150 мг.
   В обыденной жизни необходимо соблюдать гигиенические рекомендации и помнить о том, что использование алюминиевой посуды при кулинарной обработке продуктов питания многократно усиливает токсичность ядовитых веществ.
   В современных экологических условиях питание должно быть адекватно. Существует определенная взаимосвязь между состоянием здоровья человека и склонностью к потреблению каких-либо определенных продуктов питания. Особенно важно изучать питание людей, проживающих в крайних климатических условиях. Например, в рационе эскимосов преобладают продукты животного происхождения, продукты морского промысла. В связи с этим необходимо учитывать особенности ферментативных процессов населения в зависимости от характера рациона, поскольку система пищеварения у них адаптирована к определенному набору продуктов.
   У некоторых народов Европы и Азии у 19 % населения отмечается непереносимость молока. У жителей Ближнего Востока непереносимость молока составляет 10 %.
   Адекватное питание в современных условиях основано на следующих принципах:
   1) использовании защитных компонентов в пищевых продуктах, соединений, улучшающих обезвреживающую функцию печени; использовании компонентов пищи, обладающих способностью оказывать влияние на микроорганизмы и вирусы, антиканцерогены;
   2) включении пищевых волокон и увеличении их содержания до 20 г в сутки;
   3) оптимизации количественной и качественной взаимосвязи пищевых веществ;
   Питание должно соответствовать состоянию здоровья и высокой работоспособности, способствовать отдалению старости и высокой продолжительности жизни. Питание должно обеспечить защитные силы организма от влияния неблагоприятных факторов внешней среды, нервно-психических перегрузок, обеспечивать профилактику болезней желудочно-кишечного тракта, сердечно-сосудистой системы, болезней обмена веществ.

ЛЕКЦИЯ № 9. Гигиенические основы рационального питания

Питание и здоровье. Алиментарные заболевания

   Алиментарный фактор (питание) и здоровье тесно связаны. Эксперты Всемирной организации здравоохранения (ВОЗ) для того, чтобы обратить внимание международных организаций, государственных деятелей на проблемы питания, на решающее влияние питания на уровень здоровья планеты, специально проводят декадники, годы, посвященные вопросам питания и даже специальные десятилетия. Особое внимание ВОЗ уделяет этому вопросу в слаборазвитых странах и развивающихся странах. В страны Африки, Латинской Америки выезжают эксперты ВОЗ, которые организуют специальные занятия с медицинским персоналом этих стран и непосредственно с населением по вопросам рационального питания. Эти декадники, мероприятия ВОЗ, посвященные вопросам питания, проходят под девизом «Здоровая пища – хорошее здоровье!» Это положение, выдвинутое ВОЗ, не потеряло актуальности и сегодня.
   Питание, или алиментарный фактор, в значительной степени определяет важнейшие функции организма. Особенно важен характер питания в современных условиях. Это обусловлено рядом факторов, в первую очередь высокими нервно-психическими нагрузками, стрессами. Важно отметить, что характер стрессов за последние годы явно изменился. Сегодня стрессы отличаются постоянством. Их воздействие носит такой характер, что появилось понятие «перешептывание нейронов».
   Вторым фактором, формирующим проблемы питания в современных условиях, является гиподинамия (отсутствие или низкий уровень физических нагрузок).
   Третий фактор, оказывающий влияние на питание в современных условиях, – загрязнение окружающей среды. Уровень загрязнения окружающей среды дает основу для проблем питания. Эту проблему можно рассматривать в нескольких плоскостях. С одной стороны, питание является способом ослабления влияния негативных факторов окружающей среды на здоровье. С другой стороны, в условиях интенсивного загрязнения окружающей среды продукты питания сами становятся объектом воздействия загрязнителей.
   Питание – социальный фактор, так как затрагивает интересы населения всей планеты. По данным экспертов BОЗ, в мире голодает около 500 млн человек. В Африке голодает около 150 млн человек. Ежегодно в мире от разных причин умирает приблизительно 50 млн человек, в том числе приблизительно 39 млн в развивающихся странах. Около 10 млн человек ежегодно погибает от голода. 100 млн детей в зависимых странах страдают от голода. ООН и ее комитеты (в частности, ВОЗ, ФАО – сельскохозяйственная и продовольственная комиссия ООН) постоянно обращают внимание на проблемы питания.
   В настоящее время установлена четкая взаимосвязь характера питания и показателей здоровья. Питание оказывает влияние на важнейшие показатели здоровья населения:
   1) рождаемость и продолжительность жизни;
   2) состояние здоровья и физическое развитие;
   3) уровень работоспособности;
   4) заболеваемость и смертность.
   Изучение характера питания долгожителей свидетельствует о том, что важнейшим условием этого долголетия являлась диета с полноценными продуктами питания.
   Напрямую характер питания связан с показателями заболеваемости и смертности в таких странах, как Африка, Латинская Америка, Юго-Восточная Азия.
   Характер питания определяет особенности формирования и развития целого ряда заболеваний. В частности, питание и болезни, несомненно, связаны с характером питания. Нарушение характера питания во многом определяет развитие раннего атеросклероза, коронарной недостаточности, гипертонической болезни, болезней желудочно-кишечного тракта. Нарушение режима питания способствует появлению онкологических заболеваний. Характер питания оказывает влияние на жировой, холестериновый обмен и способствует раннему развитию заболеваний сердечно-сосудистой системы и других органов. Проблемой является избыточное питание, которое приводит к развитию ожирения. Наконец, существует целый ряд заболеваний, связанных с недостаточностью питания (алиментарные заболевания). К ним относятся прежде всего белковая недостаточность. Белково-калориевая недостаточность может проявляться в виде алиментарного маразма. Тяжелой формой белково-калориевой недостаточности является квашиоркор. К алиментарным заболеваниям относятся эндемический зоб, алиментарная анемия, рахит, ожирение и другие заболевания.
   Более детальная характеристика алиментарных заболеваний может быть представлена следующим образом. В литературе наиболее подробно освещена белково-калориевая недостаточность – комплекс патологических состояний, связанный с недостаточностью поступления в организм белка, калорий, и, как правило, с параллельно протекающей инфекцией. Наиболее часто данная патология встречается у детей грудного и раннего возраста. Белково-калориевая недостаточность включает целый комплекс патологических состояний – от алиментарного маразма до квашиоркора. Алиментарный маразм – состояние, характеризующееся мышечной атрофией, отсутствием подкожно-жировой клетчатки и очень низким весом тела. Все это является результатом приема низкокалорийной пищи в течение длительного времени, а также недостатка в ней белков и других питательных веществ. Большое значение при этом имеют инфекционные заболевания. Наиболее тяжелой формой белково-калориевой недостаточности является заболевание квашиоркор. Это тяжелый клинический синдром, главной причиной которого является недостаток аминокислот, необходимых для синтеза белков. Клинически квашиоркор характеризуется задержкой роста, отеками, атрофиями мышц, дерматозами, изменением цвета волос, увеличением печени, диареей, психомоторными вменениями, такими как апатия, страдальческий вид. Для квашиоркора характерно выявление низкого содержания уровня аргенина в сыворотке крови. Наиболее часто данный синдром проявляется у детей в возрасте от 1 до 3 лет. В период грудного вскармливания или в период его прекращения состояние отягощается инфекцией, которая усиливает распад белка или снижает его поступление в организм.
   В тропической Африке отмечаются все формы белково-калориевой недостаточности – от алиментарного маразма до квашиоркора. Однако в развивающихся странах белково-калориевая недостаточность с клиникой алиментарного маразма встречается чаще, чем квашиоркор. Растущая урбанизация при ухудшении условий жизни приводит к алиментарному маразму. Маразм характерен для трущоб перенаселенных городов, а квашиоркор – это заболевание, характерное для сельской местности, для деревень. Белково-калориевая недостаточность наиболее часто поражает детей в возрасте 2 лет, старше 4 лет и более гораздо реже. Воздействие белково-калориевой недостаточности сохраняется и в более позднем возрасте. Восстановление нарушенных функций протекает медленно и бывает неполным. А рост и психическое развитие задерживаются на долгие годы. С окончанием периода младенчества симптомы болезни меняются. Симптомы маразма, при котором основную роль играет недостаток калорий, сдвигается в сторону недостаточности, вызываемой белковой и калориевой недостаточностью. На втором году имеют значение инфекции, особенно корь и коклюш, которые приводят к распаду белка и усугубляют белково-калориевую недостаточность и, в частности, недостаточность в аминокислотах. Классический квашиоркор встречается у детей, которые после полноценного и продолжительного грудного вскармливания были постепенно или внезапно переведены на неограниченный рацион продуктов, богатых крахмалом и бедных белками, как это часто бывает в тропической Африке у детей последних месяцев второго и в течение третьего годов жизни. Детская смертность от белково-калориевой недостаточности достаточно велика. Квашиоркор является основой патологией белково-калориевой недостаточности.
   Проявлением белково-калориевой недостаточности являются психическое нарушение и расстройства психического и физического развития. Поражение психики характеризуется развитием маразма, отмечаются снижение массы тела, изменение конституционных признаков (большой живот). Наибольшее значение в лечении квашиоркора имеет рациональное питание.
   К алиментарным заболеваниям относится и эндемический зоб. Эндемический зоб (кретинизм) – алиментарное заболевание, связанное с недостатком поступления в организм йода – это основная причина эндемического зоба. Имеет значение и поступление других микроэлементов: меди, никеля, кобальта, несбалансированность рациона, его белковая и жировая неполноценность. По данным экспертов ВОЗ, эндемическим зобом на планете страдает около 200 млн человек. В настоящее время установлено, что в той местности, где население получает питание, обеспечивающее поступление йода в организм на уровне 100—200 мкг в сутки, эндемический зоб не наблюдается. Эндемический зоб распространен на тех территориях, где отмечается низкий уровень содержания йода в почве, воде, продуктах растительного и животного происхождения. В суточном балансе основное поступление йода обеспечивается продуктами растительного происхождения. 50 % общего поступления йода в организм обеспечивается продуктами питания растительного происхождения. Наиболее часто эндемический зоб распространен в горных и предгорных районах. Распространение его на равнинных территориях является исключением. В районах с высокой эндемичностью отмечаются нарушения физического и умственного развития. Это может отмечаться у населения в ранние периоды жизни в результате угнетения функций железы и уменьшения выработки секрета. Результатом этого является нарушение психики в виде кретинизма, идиотизма. ВОЗ приводит данные (обзор) по 120 странам в отношении распространенности эндемического зоба. Классическими эндемическими районами, связанными с распространением зоба, являются высокогорные долины Альп, Пиренеи. Распространенность эндемического зоба отмечается у населения на склонах Гималаев и вдоль Кордильер. Широко отмечается данная патология и в бассейне Великих Озер (между Канадой и США).
   Ряд продуктов питания усугубляет развитие эндемического зоба. В частности, таким эффектом обладают вещества, содержащиеся в обычной капусте. Она обладает зобогенным эффектом. Зобогенным эффектом обладает и ряд химических веществ, что следует учитывать при профилактике этого заболевания. Широкая распространенность эндемического зоба отмечается в пчеловодческих горных районах Индии. Здесь при уровне пораженности населения более 30 % отмечается массовая рождаемость детей, страдающих заболеваниями психики, массовое рождение детей с проявлениями идиотизма. Также отмечено, что в семьях, где родители страдают эндемическим зобом или получают недостаточное количества йода, рождаются дети с врожденной глухонемотой. Таким образом, проблема эндемического зоба должна рассматриваться во всех ее аспектах и проявлениях.
   Эндемический зоб распространен на территории Саратовской области. Широко распространен эндемический зоб среди жителей сельской местности правобережного региона области Хвалынского, Базарно-Карабулакского, Вольского и некоторых других районов. Нужно сказать, что одним из профилактических мероприятий по снижению уровня заболеваемости эндемическим зобом является рациональное полноценное питание. И важнейшей частью этого рационального полноценного питания является поступление в организм йода. Профессором Л.И. Лось академиком Р.А. Габовичем и другими, занимавшимися проблемой эндемического зоба, было предложено обеспечение населения с профилактической целью йодированной солью. Население, обеспеченное такой солью, в значительной мере защищено от низкого уровня поступления йода с пищевыми продуктами, главным образом растительного происхождения. Учеными-гигиенистами в области гигиены питания с целью профилактики эндемического зоба предложены специальные рационы. В частности, такие рационы были разработаны на кафедре гигиены Уральского медицинского университета. В этих рационах обязательны были продукты моря – рыбопродукты, морская капуста, которая отличается достаточно высоким содержанием уровня йода. Также положительное влияние на снижение уровня заболеваемости эндемическим зобом оказывают полноценный животный белок и достаточный уровень содержания в рационе ПНЖК и других биологически активных веществ пищевого характера.
   Алиментарные анемии
   Научная группа ВОЗ дала следующее определение алиментарным анемиям – это состояние, при котором содержание гемоглобина в крови ниже нормы вследствие недостаточности одного или нескольких важных питательных веществ независимо от причины этой недостаточности. Анемия существует, если уровень гемоглобина ниже приведенного здесь показателя из расчета на 1 г или 1 мл венозной крови. Дети в возрасте от 6 месяцев до 6 лет – 11 г на 100 мл венозной крови, дети от 6 лет до 14—12 г/100 мл, взрослые мужчины – 13 г/100 мл венозной крови, женщины (не беременные) – 12 г/100 мл венозной крови и беременные – 11 г/100 мл венозной крови. Анемии широко распространены в государствах Африки. В Кении 80 % населения имеет признаки недостаточности железа. В начале прошлого столетия анемия считалась самой распространенной патологией среди сельскохозяйственных рабочих и чайных плантаций Индии. 14 % мужчин и женщин страдают тяжелой формой анемии, т. е. содержание гемоглобина отмечается в количествах менее 8 г на 100 мл венозной крови. Анемиями в основном страдают женщины. Профилактика анемий – это рациональное питание, потребление продуктов, содержащих достаточное количество железа. К этим продуктам относятся: телячья печень, содержание в которой железа на уровне 13,3 мг на 100 г продукта, говядина сырая – 3,5 мг на 100 г, яйцо куриное – 2,7 мг на 100 г, шпинат – 3,0 мг на 100 г продукта. Менее 1,0 мг содержат морковь, картофель, помидор, капуста, яблоки. При этом большое значение имеет содержание в этих продуктах ионизированного биологически активного железа.
   К алиментарным заболеваниям, характеризующимся недостаточным питанием, относятся авитаминозы. К ним относятся ксерофтальмия, связанная с недостаточным содержанием или нарушением обмена витамина А. Клинические проявления выражаются помутнением роговицы глаза и развитием слепоты, нарушениями со стороны кожных покровов. Рациональное питание, употребление продуктов, богатых витамином А, являются основой профилактики ксерофтальмии. К ним относятся молоко, желток куриного яйца и продукты растительного происхождения, богатые провитамином А или β-каротином. Однако при этом следует помнить, что соотношение витамина А и β-каротина должно быть строго определенным. Активность β-каротина обусловливается на фоне достаточного поступления в организм витамина А. В общем суточном балансе поступления на долю собственно витамина А должно приходиться не менее 1/3 всей потребности в этом витамине.
   К заболеваниям, связанным с недостаточным питанием, относится также рахит, связанный с недостаточным поступлением в организм витамина D. Также авитаминозы связаны с недостаточным поступлением в организм витаминов С, группы В и других.
   К заболеваниям избыточного питания относится ожирение. Ожирение является алиментарным заболеванием социального характера. Этой патологией страдает каждый третий в развитых странах. Ожирение является причиной инвалидности и сокращения продолжительности жизни. Люди, страдающие избыточным весом, как правило, имеют продолжительность жизни на 10 % ниже, нежели люди, имеющие идеальную массу тела. Ожирение способствует развитию других патологий: нейроэндокринных заболеваний (диабет), сердечно-сосудистых заболеваний. Умеренная степень ожирения является фактором риска возникновения сахарного диабета (лица, страдающие этой формой патологии, в 4 раза чаще болеют сахарным диабетом). При тяжелых формах ожирения частота сахарного диабета в 30 раз выше. Ожирение – фактор риска не только сахарного диабета и сердечно-сосудистых заболеваний, но фактор риска возникновения инфекционных заболеваний. Лица, страдающие ожирением, в 11 раз чаще предрасположены к возникновению инфекционной патологии.

Рациональное питание. Основные положения теории рационального сбалансированного питания

   Питание является основной биологической потребностью человека и древнейшей существенной связью живого организма с окружающей природой.
   Рациональное и полноценное в количественном и качественном отношении питание наряду с другими условиями социальной среды обеспечивает оптимальное развитие человеческого организма, его физическую и умственную работоспособность, выносливость и широкие адаптационные возможности. Полноценное питание с оптимальным содержанием пищевых веществ оказывает благоприятное влияние на иммунобиологический статус организма и повышает его устойчивость к инфекционным агентам и токсическим веществам.
   Современное представление о рациональном и полноценном питании сформировалось на основании многолетних исследований зарубежных и отечественных ученых.
   Рациональным, здоровым питанием является питание, которое удовлетворяет потребности организма в необходимых питательных веществах – белках, жирах, углеводах, витаминах и минеральных веществах. В настоящее время существует целый ряд теорий питания. В нашей стране и во всем мире широкое распространение получила теория рационального, сбалансированного питания. В соответствии с теорией рационального сбалансированного питания здоровое питание должно отвечать определенным требованиям.
   Питание должно быть сбалансировано по химическому составу в отношении основных питательных веществ – белков, жиров, углеводов, минеральных веществ и витаминов. Это соотношение основных питательных веществ получило название принципа сбалансированности питания первого порядка.
   Важным является и соотношение незаменимых эссенциальных веществ. Для белков это соотношение незаменимых аминокислот, для жиров – сбалансированное соотношение жирных кислот (предельных и непредельных), для углеводов – это соотношение простых и сложных углеводов, для витаминов – соотношение различных форм провитаминов и собственно витаминов, оптимальное соотношение макро– и микроэлементов. Это положение получило название в теории рационального и сбалансированного питания принципа сбалансированности питания второго порядка.
   Третьим положением теории рационального питания является представление о рациональном режиме питания, определяемом количеством приемов пищи, интервалами между ними, приемом пищи в строго определенное время и правильным распределением пищи по отдельным ее приемам.
   Четвертое положение в теории рационального питания определяется усвояемостью или перевариваемостью рационов, т. е. питание должно по способу кулинарной обработки, по пищевому набору продуктов соответствовать переваривающей способности желудочно-кишечного тракта в зависимости от возраста, индивидуальных особенностей, состояния ферментных систем желудочно-кишечного тракта на всех этапах переваривания пищи: полостного, пристеночного и внутриклеточного. Питание должно быть сбалансировано по усвояемости и перевариваемости.
   Первое положение теории рационального и сбалансированного питания – оптимальное соотношение химических веществ в пищевом рационе – тесно связано с представлением о сбалансированной мегакалории.
   Мегакалория – миллион малых калорий, тысяча килокалорий – больших калорий, должна быть строго сбалансированной в отношении содержания в ней белков, жиров и углеводов.
   В наибольшей мере энергетическая потребность организма обеспечивается за счет углеводов, затем жиров и, наконец, белков. Если общую энергетическую ценность рациона принять за 100 %, то на долю белков приходится 12 %, на жиры – 33 %, на углеводы – 55 % калорийности. Или, если в абсолютном отношении, то в 1000 ккал должно быть 120 ккал за счет белка, 333 ккал за счет жира и 548 ккал за счет углеводов. Если мы примем белки протеины 120 ккал за единицу, то соотношение по калорийности белков, жиров и углеводов в пределах мегакалории будет выражаться как: 1 : 2,7 : 4,6.
   Известно, что калорийность 1 г белка составляет 4 ккал, 1 г жира – 9 ккал и 1 г углеводов – 4 ккал. Таким образом, 120 ккал будут представлены белками в виде 30 г, 333 ккал жира обеспечиваются 37 г жира и 543 ккал углеводов – обеспечиваются 137 г углеводов. Если 30 г белков протеинов мы принимаем за единицу, то по массе соотношения белков, жиров и углеводов в пределах сбалансированной мегакалории будет выражаться как 1 : 1,2 : 4,6. Это положение оптимального соотношения основных питательных веществ белков, жиров и углеводов с учетом минимальной калорийности рациона получило название принципа сбалансированности питания первого порядка.
   Важным является соотношение и эссенциальных, незаменимых питательных веществ в рационе. Речь идет прежде всего о сбалансированном, оптимальном соотношении незаменимых аминокислот. Это обеспечивается определенным соотношением белков растительного и животного происхождения. Оптимальное соотношение незаменимых аминокислот определяется соотношением 3 лимитирующих белковую полноценность рациона незаменимых аминокислот: триптофана, метионина и лизина. Соотношение этих незаменимых аминокислот по триптофану должно быть 1 : 3 : 3. Оптимальное соотношение должно быть и других эссенциальных веществ, входящих в состав жиров, углеводов, минеральных веществ и витаминов. Это оптимальное соотношение эссенциальных незаменимых веществ пищевого характера получило название принципа сбалансированности питания второго порядка.
   Представление о сбалансированной мегакалории связывается и с определенным соответствием калорийности и поступления в организм витаминов и других компонентов пищи. Так, в частности, витамин С с учетом калорийности рациона из расчета на 1 мкал должен содержаться в рационе из расчета 25 мг на 1 мкал. Таким образом, если знергозатраты составляют 3 Мкал, или 3000 ккал, то суточная потребность в витамине С должна составлять 75 мг. Такой же подход существует в отношении обеспечения организма витаминами группы В и других ингредиентов пищевого рациона.
   Важным положением теории рационального и сбалансированного питания является второе положение о том, что энергетическая ценность пищевого рациона в большинстве случаев должна соответствовать энергетическим тратам человека. У детей, беременных женщин, кормящих матерей, исхудавших реконвалесцентов она должна превышать энерготраты. Часть пищевых веществ расходуется на пластические процессы. Энергозатраты организма человека зависят в основном от профессии и характера трудовой деятельности, домашней работы, образа жизни, а также от возраста, массы тела, пола, физического состояния, воздействия всевозможных факторов внешней среды.
   Энергетические затраты для лиц однородного коллектива определяются следующим образом: они состоят из основного обмена (у взрослого человека он ориентировочно равен 4,18 кДж, или 1 ккал на 1 кг массы тела в час). Вторым элементом нерегулируемых энергозатрат основного обмена являются знергозатраты, расходуемые на усвоение пищи – специфическое динамическое действие. Специфическое динамическое действие пищи смешанного характера приводит к повышению основного обмена на 10 %. Сумма основного обмена и энерготраты, связанные со специфическим динамическим действием пищи, составляют нерегулируемую часть суточных энергозатрат человека. При определении общих энергозатрат человека к этой нерегулируемой части необходимо прибавить энергетические траты организма на выполняемые в течение дня работы, связанные с трудовой деятельностью, т. е. производственные, служебные и домашние работы. С этой целью проводят хронометраж деятельности групп лиц данного коллектива, или производят расчет, пользуясь данными об энергетических затратах при различных видах трудовой деятельности. Существуют прямые и непрямые методы определения энергетических затрат. Наиболее широко используемым методом определения энергетических затрат в современных условиях является определение их по специальным таблицам, составленным на основании данных по энергетическим затратам, полученным методом изучения газообмена. Очень важно отметить, что энергетические траты заложены в основу физиологических норм питания с учетом возрастных аспектов, учетом состояния организма человека, пола, климата, условий проживания.
   Важнейшим положением рационального питания является его сбалансированность по режиму. Режим питания предусматривает частоту приема пищи в зависимости от возраста, характера трудовой деятельности и состояния здоровья, в частности функционального состояния желудочно-кишечного тракта, состояния его ферментативных систем. Имеет значение время между отдельными приемами пищи. Режим питания обеспечивает своевременную доставку организму источников энергии и питательных веществ, необходимых организму человека. Режим питания создает оптимальные условия деятельности желудочно-кишечного тракта, связанные с его моторикой, перистальтикой и выделением и образованием тех или иных ферментов, секретов.

Физиологические нормы питания

   В основу физиологических норм питания положены дифференцированные подходы в зависимости от профессиональной деятельности, т. е. энергетических трат, возраста, пола, физиологического состояния и климатических условий проживания. Физиологические нормы питания строятся исходя из энергетических трат населения.
   По энергетическим тратам все трудоспособное население делится на 5 групп.
   5 групп интенсивности труда
   К первой группе относятся преимущественно работники умственного труда, руководители предприятий, инженерно-технические работники, медицинские работники, кроме врачей-хирургов, медицинских сестер и санитарок. К этой группе относятся также воспитатели и педагоги. Энергетические траты этой группы находятся в пределах от 2550 до 2800 ккал.
   Эта группа подразделяется на три возрастных подгруппы. Выделяются группы 18—29 лет, 30—39 лет и 40—59 лет.
   Вторая группа населения по интенсивности труда представлена работниками, занятыми легким физическим трудом. Это инженерно-технические работники, труд которых связан с некоторыми физическими усилиями, работники радиоэлектронной, часовой промышленности, связи и телеграфа, сферы обслуживания, обслуживающие автоматизированные процессы, агрономы, зоотехники, медсестры и санитарки. Энергетические затраты второй группы составляют 2750—3000 ккал. Эта группа, как первая, делится на 3 возрастные категории.
   Третья группа населения по интенсивности труда представлена работниками, занятыми средним по тяжести трудом. Это слесари, токари, наладчики, химики, водители средств транспорта, водники, текстильщики, железнодорожники, врачи-хирурги, полиграфисты, бригадиры тракторных и полеводческих бригад, продавцы продовольственных магазинов и др. Энергетические траты этой группы составляют 2950—3200 ккал.
   К четвертой группе относятся работники тяжелого физического труда – работники-механизаторы, сельскохозяйственные работники, работники газодобывающей и нефтяной промышленности, металлурги и литейщики, работники деревообрабатывающей промышленности, плотники и другие. Для них энергозатраты составляют 3350—3700 ккал.
   Пятая группа – работники, занятые особо тяжелым физическим трудом: работники подземных шахт, отбойщики, каменщики, вальщики леса, сталевары, землекопы, грузчики, бетонщики, труд которых немеханизирован, и др. В эту группу входят представители только мужского пола, так как законодательством запрещается женская работа с такой интенсивностью труда. Это особо тяжелый физический труд, потому энергозатраты здесь находятся в пределах от 3900 до 4300 ккал.
   Существуют физиологические нормы питания детей.
   В целом для взрослого трудоспособного населения потребности в белках составляют в среднем 100—120 г ± 10 %. Такие же потребности взрослого организма в жирах – от 80 до 150 г и потребности в углеводах – 350—600 г в сутки.
   В зависимости от энергетических трат и условий труда физиологические нормы питания предусматривают необходимый уровень обеспечения организма витаминами, минеральными солями, макро– и микроэлементами.
   Потребность детей и подростков в необходимых калоражах рациона определяется следующими показателями. Пищевая ценность рациона детей в возрасте от 7 до 10 составляет 2300 ккал, 11—13-летних мальчиков – 2700 ккал, девочек – 2450 ккал, юношей и девушек 17 лет, соответственно, 2900 и 2600 ккал. Существуют рекомендуемые суточные потребности в белках, жирах и углеводах для детей и подростков в разных возрастных групп. Для детей в возрасте 7—10 лет потребность в белках составляет 70 г, жирах – 79 г (из них растительных – 15 г) и в углеводах – 330 г. Для мальчиков и девочек 11—13 лет соответственно в белках – 93 г (55 граммов животного происхождения), жирах – 93 (19 г. растительного происхождения) и углеводах – 370 г. Для девочек 11—13 лет – белках – 85 г (51 г животного происхождения), жирах – 85 г (17 г растительного происхождения) и углеводах – 340 г. Для юношей 14—17 лет потребности в белках приближаются к потребностям взрослого населения и составляют 100 г (из них белков животного происхождения – 60 г), в жирах – 100 г (из них растительного происхождения – 20 г) и углеводах – 400 г. Для девушек 14—17 лет потребность в белках составляет 90 г (54 г животного происхождения), жирах – 90 г (18 г растительного происхождения), углеводах – 360 г в сутки.
   Существует специальное положение о рациональном питании лиц, занятых физкультурой и спортом. Особое значение имеет питание для лиц с различными заболеваниями – лечебное питание. Для лиц, занятых в определенных производствах, где воздействуют определенные профессионально-вредные физические и химические факторы, используют лечебно-профилактическое питание. В целом вопрос по питанию должен решаться индивидуально. Каждый должен получать индивидуальное рациональное питание с учетом состояния здоровья. В мире существует понятие пищевого статуса человека. Это состояние здоровья в зависимости от питания.

ЛЕКЦИЯ № 10. Значение белков и жиров в питании человека

Биологическая роль белков

   Белок, являясь важнейшим компонентом питания, обеспечивающим пластические и энергетические нужды организма, справедливо назван протеином, показывающим первую его роль в питании. Роль белков в питании человека трудно переоценить. Сама жизнь является одним из способов существования белковых тел. Биологическая роль белков
   Белок можно отнести к жизненно важным пищевым веществам, без которых невозможны жизнь, рост и развитие организма. Достаточность белка в питании и высокое его качество позволяют создать оптимальные условия внутренней среды для нормальной жизнедеятельности организма, его развития и высокой работоспособности. Белок является главной составной частью пищевого рациона, определяющей характер питания. На фоне высокого уровня белка отмечается наиболее полное проявление в организме биологических свойств других компонентов питания. Белки обеспечивают структуру и каталитические функции ферментов и гормонов, выполняют защитные функции, участвуют в образовании многих важных структур белковой природы: иммунных тел, специфических γ-глобулинов, белка крови пропердина, играющего известную роль в создании естественного иммунитета, участвуют в образовании тканевых белков, таких как миозин и актин, обеспечивающих мышечные сокращения, глобина, входящего в состав гемоглобина эритроцитов крови и выполняющего важнейшую функцию дыхания. Белок, образующий зрительный пурпур (родопсин) сетчатки глаза, обеспечивает нормальное восприятие света, и др.
   Следует отметить, что белки определяют активность многих биологически активных веществ: витаминов, а также фосфолипидов, отвечающих за холестериновый обмен. Белки определяют активность тех витаминов, эндогенный синтез которых осуществляется из аминокислот. Например, из триптофана – витамина PР (никотиновая кислота), обмен метионина – связан с синтезом витамина U (метилметионин-сульфоний). Установлено, что белковая недостаточность может привести к недостаточности витамина С и биофлаваноидов (витамина Р). Нарушение в печени синтеза холина (группы витаминоподобных веществ) приводит к жировой инфильтрации печени.
   При больших физических нагрузках, а также при недостаточном поступлении жиров и углеводов белки участвуют в энергетическом обмене организма.
   Белки рациона определяют такие состояния, как алиментарная дистрофия, маразм, квашиоркор. Квашиоркор означает «отнятый от груди ребенок». Им заболевают дети, отнятые от груди и переведенные на углеводистое питание с резкой недостаточностью животного белка. Квашиоркор вызывает как стойкие необратимые изменения конституционального характера, так и изменения личности.
   Наиболее тяжелые последствия в состоянии здоровья, нередко на всю жизнь, оставляет такой вид недостаточности питания, как алиментарная дистрофия, чаще всего возникающая при отрицательном энергетическом балансе, когда в энергетические процессы включаются не только пищевые химические вещества, поступающие с пищей, но и собственные, структурные белки организма. В алиментарной дистрофии выделяют отечную и безотечную формы с явлениями или без явлений витаминной недостаточности.
   Может сложиться впечатление, что заболевания алиментарного характера возникают только при недостаточном поступлении белка в организм. Это не совсем так! При избыточном поступлении белка у детей первых трех месяцев жизни появляются симптомы дегидратации, гипертермии и явления обменного ацидоза, что резко увеличивает нагрузку на почки. Обычно это возникает, когда при искусственном вскармливании используют неадаптированные молочные смеси, негуманизированные типы молока.
   Обменные нарушения в организме могут появиться и при несбалансированности аминокислотного состава поступающих белков.

Заменимые и незаменимые аминокислоты, значение и потребность в них

   В настоящее время известно 80 аминокислот, наибольшее значение в питании имеют 30, которые наиболее часто встречаются в продуктах и чаще всего потребляются человеком. К ним относятся следующие.
   1. Алифатические аминокислоты:
   а) моноаминомонокарбоновые – глицин, аланин, изолейцин, лейцин, валин;
   б) оксимоноаминокарбоновые – серин, треонин;
   в) моноаминодикарбоновые – аспаргиновая, глютаминовая;
   г) амиды моноаминодикарбоновых кислот – аспарагин, глутамин;
   д) диаминомонокарбоновые – аргинин, лизин;
   е) серосодержащие – гистин, цистеин, метионин.
   2. Ароматические аминокислоты: фенилаланин, тирозин.
   3. Гетероциклические аминокислоты: триптофан, гистидин, пролин, оксипролин.
   Наибольшее значение в питании представляют незаменимые аминокислоты, которые не могут синтезироваться в организме и поступают только извне – с продуктами питания. К их числу относят 8 аминокислот: метионин, лизин, триптофан, треонин, фенилаланин, валин, лейцин, изолейцин. В эту группу входят и аминокислоты, которые в детском организме не синтезируются или синтезируются в недостаточном количестве. Прежде всего это гистидин. Предметом дискуссий является также вопрос о незаменимости в детском возрасте глицина, цистина, а у недоношенных детей также глицина и тирозина. Биологическая активность гормонов АКТГ, инсулина, а также коэнзима А и глютатиона определена наличием в их составе SH-групп цистина. У новорожденных детей из-за недостатка цистеназы лимитирован переход метионина в цистин. В организме взрослого человека тирозин легко образуется из фенилаланина, а цистин – из метионина, однако обратной заменяемости нет. Таким образом, можно считать, что число незаменимых аминокислот составляет 11—12.
   Поступающий белок считается полноценным, если в нем присутствуют все незаменимые аминокислоты в сбалансированном состоянии. К таким белкам по своему химическому составу приближаются белки молока, мяса, рыбы, яиц, усвояемость которых около 90 %. Белки растительного происхождения (мука, крупа, бобовые) не содержат полного набора незаменимых аминокислот и поэтому относятся к разряду неполноценных. В частности, в них содержится недостаточное количество лизина. Усвоение таких белков составляет, по некоторым данным, 60 %.
   Для изучения биологической ценности белков используют две группы методов: биологические и химические. В основе биологических лежит оценка скорости роста и степени утилизации пищевых белков организмом. Данные методы являются трудоемкими и дорогостоящими.
   Химический метод колоночной хроматографии позволяет быстро и объективно определить содержание аминокислот в пищевых белках. На основании этих данных биологическую ценность белков определяют путем сравнения аминокислотного состава изучаемого белка со справочной шкалой аминокислот гипотетического идеального белка или аминограмм высококачественных стандартных белков. Этот методический прием получил название аминокислотного СКОРА = отношению количества АК в мг в 1 г исследуемого белка к количеству АК в мг в 1 г идеального белка, умноженного на 100 %.
   Белки животного происхождения имеют наибольшую биологическую ценность, растительные – лимитированы по ряду незаменимых аминокислот, прежде всего по лизину, а в пшенице и рисе – также и по треонину. Белки коровьего молока отличаются от белков грудного дефицитом серосодержащих аминокислот (метионина, цистина). К «идеальному белку» по данным ВОЗ приближается белок грудного молока и яиц.
   Важным показателем качества пищевого белка служит также степень его усвояемости. По степени переваривания протеолитическими ферментами пищевые белки располагаются следующим образом:
   1) белки рыбы и молока;
   2) белки мяса;
   3) белки хлеба и круп.
   Белки рыбы лучше усваиваются из-за отсутствия в их составе белка соединительной ткани. Белковая полноценность мяса оценивается по соотношению между триптофаном и оксипролином. Для мяса высокого качества это соотношение составляет 5,8.
   Каждая аминокислота из группы эссенциальных играет определенную роль. Их недостаток или избыток ведет к каким-либо изменениям в организме.
   Биологическая роль незаменимых аминокислот
   Гистидин играет важную роль в образовании гемоглобина крови. Недостаток гистидина приводит к снижению уровня гемоглобина в крови. При декарбоксилировании гистидин превращается в гистамин – вещество, имеющее большое значение в расширении сосудистой стенки и ее проницаемости, влияет на выделение желудочного пищеварительного сока. Недостаток гистидина, так же как и избыток, ухудшает условно-рефлекторную деятельность.
   Валин – физиологическая роль данной НАК недостаточно ясна. При недостаточном поступлении у лабораторных животных отмечаются расстройства координации движений, гиперестезия.
   Изолейцин наряду с лейцином входит в состав всех белков организма (за исключением гемоглобина). В плазме крови содержится 0,89 мг% изолейцина. Отсутствие изолейцина в пище приводит к отрицательному азотистому балансу, к замедлению процессов роста и развития.
   Лизин относится к одной из наиболее важных незаменимых аминокислот. Он входит в триаду аминокислот, особенно учитываемых при определении общей полноценности питания: триптофан, лизин, метионин. Оптимальное соотношение этих аминокислот составляет: 1 : 3 : 2 или 1 : 3 : 3, если взять метионин + цистин (серосодержащие аминокислоты). Недостаток в пище лизина приводит к нарушению кровообращения, снижению количества эритроцитов и уменьшению в них гемоглобина. Также отмечаются нарушение азотистого баланса, истощение мышц, нарушение кальцификации костей. Происходит также ряд изменений в печени и легких. Потребность в лизине составляет 3—5 г в сутки. В значительных количествах лизин содержится в твороге, мясе, рыбе.
   Метионин играет важную роль в процессах метилирования и трансметилирования. Это основной донатор метильных групп, которые используются организмом для синтеза холина (витамина группы В). Метионин относится к липотропным веществам. Он оказывает влияние на обмен жиров и фосфолипидов в печени и таким образом играет важную роль в профилактике и лечении атеросклероза. Установлена связь метионина с обменом витамина В12 и фолиевой кислотой, которые стимулируют отделение метильных групп метионина, обеспечивая таким образом синтез холина в организме. Метионин имеет большое значение для функции надпочечников и необходим для синтеза адреналина. Суточная потребность в метионине составляет около 3 г. Основным источником метионина следует считать молоко и молочные продукты: в 100 г казеина содержится 3 г метионина.
   Триптофан, так же как и треонин, – фактор роста и поддержания азотистого равновесия. Участвует в образовании сывороточных белков и гемоглобина. Триптофан необходим для синтеза никотиновой кислоты. Установлено, что из 50 мг триптофана образуется около 1 мг ниацина, в связи с чем 1 мг ниацина или 60 мг триптофана могут быть приняты как единый «ниациновый эквивалент». Суточная потребность в никотиновой кислоте в среднем определена в количестве 14—28 ниациновых эквивалентов, а в расчете на сбалансированную мегакалорию – 6,6 ниациновых эквивалентов. Потребность организма в триптофане составляет 1 г в сутки. В продуктах питания триптофан распределен неравномерно. Так, например, 100 г мяса эквивалентно по содержанию триптофана 500 мл молока. Из растительных продуктов необходимо выделить бобовые. Очень мало триптофана в кукурузе, поэтому в тех районах, где кукуруза является традиционным источником питания, следует проводить профилактические осмотры для определения обеспеченности организма витамином PP.
   Фенилаланин связан с функцией щитовидной железы и надпочечников. Он дает ядро для синтеза тироксина – основной аминокислоты, образующей белок щитовидной железы. Из фенилаланина может синтезироваться тирозин и далее адреналин. Однако обратного синтеза из тирозина-фенилаланин не происходит.
   Существуют стандарты сбалансированности НАК, разработанные с учетом возрастных данных. Для взрослого человека (г/сутки): триптофана – 1, лейцина 4—6, изолейцина 3—4, валина 3—4, треонина 2—3, лизина 3—5, метионина 2—4, фенилаланина 2—4, гистидина 1,5—2.
   Заменимые аминокислоты
   Потребность организма в заменимых аминокислотах удовлетворяется в основном за счет эндогенного синтеза, или реутилизации. За счет реутилизации образуется 2/3 собственных белков организма. Ориентировочная суточная потребность взрослого человека в основных заменимых аминокислотах следующая (г/сутки): аргинин – 6, цистин – 2—3, тирозин – 3—4, аланин – 3, серин – 3, глутаминовая кислота – 16, аспирагиновая кислота – 6, пролин – 5, глюкокол (глицин) – 3.
   Заменимые аминокислоты выполняют в организме весьма важные функции, причем некоторые из них (аргинин, цистин, тирозин, глутаминовая кислота) играют физиологическую роль не меньшую, чем незаменимые (эссенциальные) аминокислоты.
   Интересны некоторые аспекты использования заменимых аминокислот в пищевой промышленности, например глутаминовой кислоты. В наибольших количествах она содержится только в свежих пищевых продуктах. По мере хранения или консервирования пищевых продуктов глутаминовая кислота в них разрушается, и продукты теряют свойственные им ароматы и вкус. В промышленности чаще используют натриевую соль глутаминовой кислоты. В Японии глутаминат натрия называют «Аджино мотто» – сущность вкуса. Пищевые продукты опрыскивают 1,5—5%-ным раствором глутамината натрия, и они долго сохраняют аромат свежести. Поскольку глутаминат натрия обладает антиокислительными свойствами, то пищевые продукты могут храниться более длительные сроки.
   Потребность в белках зависит от возраста, пола, характера трудовой деятельности, климатических и национальных особенностей и т. д. Исследованиями установлено, что азотистое равновесие в организме взрослого человека поддерживается при поступлении не менее 55—60 г белка, однако эта величина не учитывает стрессовые ситуации, болезни, интенсивные физические нагрузки. В связи с этим в нашей стране установлена оптимальная потребность взрослого человека в белке 90—100 г/сутки. При этом в пищевом рационе за счет белка должно обеспечиваться в среднем 11—13 % общей его энергетической ценности, а в процентном отношении белок животного происхождения должен составлять не менее 55 %.
   Американскими и шведскими учеными установлены ультраминимальные нормы потребления белков на основании эндогенного распада тканевых белков при безбелковых диетах: 20—25 г/сутки. Однако такие нормы при постоянном использовании не удовлетворяют потребности организма человека и не обеспечивают нормальной работоспособности, так как при распаде тканевых белков образующиеся аминокислоты, используемые в дальнейшем для ресинтеза белка, не могут обеспечить должную замену животного белка, поступающего с пищей, и это приводит к отрицательному азотистому балансу.
   Энергетическая потребность людей первой группы интенсивности труда (группа умственного труда) составляет 2500 ккал. 13 % от этой величины составляет 325 ккал. Таким образом, потребность в белке у студентов составляет приблизительно 80 г (325 ккал: 4 ккал = 81,25 г) белка.
   У детей потребность в белках определяется возрастными нормами. Количество белка из-за преобладания в организме пластических процессов на 1 кг массы тела увеличено. В среднем эта величина составляет 4 г/кг у детей от 1 до 3 лет жизни, 3,5 —4 г/кг для детей 3—7 лет, 3 г/кг – для детей 8—10 лет и детей старше 11 лет – 2,5—2 г/кг, в то время как в среднем у взрослых 1,2—1,5 г/кг в сутки.

Значение жиров в питании здорового человека

   Жиры относятся к основным питательным веществам и являются обязательным компонентом в сбалансированном питании.
   Физиологическое значение жира весьма многообразно. Жиры является источником энергии, превосходящей энергию всех других пищевых веществ. При сгорании 1 г жира образуется 9 ккал, тогда как при сгорании 1 г углеводов или белков – по 4 ккал. Жиры участвуют в пластических процессах, являясь структурной частью клеток и их мембранных систем.
   Жиры являются растворителями витаминов А, Е, D и способствуют их усвоению. С жирами поступает ряд биологически ценных веществ: фосфолипиды (лецитин), ПНЖК, стерины и токоферолы и другие биологически активные вещества. Жир улучшает вкусовые свойства пищи, а также повышает ее питательность.
   Недостаточное поступление жира приводит к нарушениям в центральной нервной системе ослаблению иммунобиологических механизмов, дегенеративным нарушениям функции кожи, почек, органа зрения и др.
   В составе жира и сопутствующих ему веществ выявлены эссеециальные, жизненно необходимые незаменимые компоненты, в том числе липотропного, антиатеросклеротического действия (ПНЖК, лецитин, витамины А, Е и др.).
   Жир оказывает влияние на проницаемость клеточной стенки, состояние ее внутренних элементов, что способствует сбережению белка. В целом от уровня сбалансированности жира с другими пищевыми веществами зависят интенсивность и характер многих процессов, протекающих в организме, связанных с обменом и усвоением пищевых веществ.
   По химическому составу жиры представляют собой сложные комплексы органических соединений, основными структурными компонентами которых являются глицерин и жирные кислоты. Удельный вес глицерина в составе жира незначителен и составляет 10 %. Основное значение, определяющее свойства жиров, имеют жирные кислоты. Они подразделяются на предельные (насыщенные) и непредельные (ненасыщенные).

Состав жиров

   Предельные (насыщенные) жирные кислоты чаще встречаются в составе животных жиров. Высокомолекулярные насыщенные кислоты (стеариновая, арахиновая, пальмитиновая) обладают твердой консистенцией, низкомолекулярные (масляная, капроновая и др.) – жидкой. От молярной массы зависит и температура плавления: чем выше молярная масса насыщенных жирных кислот, тем выше температура их плавления.
   По биологическим свойствам предельные жирные кислоты уступают непредельным. С предельными (насыщенными) жирными кислотами связывают представления об отрицательном их влиянии на жировой обмен, на функцию и состояние печени, а также развитие атеросклероза (за счет поступления холестерина).
   Непредельные (ненасыщенные) жирные кислоты широко представлены во всех пищевых жирах, особенно в растительных маслах. Наиболее часто в составе пищевых жиров встречаются непредельные кислоты с одной, двумя и тремя двойными ненасыщенными связями. Это обуславливает их способность вступать в реакции окисления и присоединения. Реакции присоединения водорода (насыщения) используют в пищевой промышленности при получении маргарина. Легкая окисляемость ненасыщенных жирных кислот приводит к накоплению окисленных продуктов и последующей их порче.
   Типичный представитель ненасыщенных жирных кислот с одной связью – олеиновая кислота, которая находится почти во всех животных и растительных жирах. Она играет важную роль в нормализации жирового и холестеринового обмена.
   Полиненасыщенные (эссенциальные) жирные кислоты
   К ПНЖК относят жирные кислоты, содержащие несколько двойных связей. Линолевая имеет две двойные, линоленовая – три, а арахидоновая – четыре двойные связи. Высоконепредельные ПНЖК рассматриваются некоторыми исследователями как витамин F.
   ПНЖК принимают участие в качестве структурных элементов высокоактивных в биологическом отношении комплексов – фосфолипидов и липопротеидов. ПНЖК – необходимый элемент в образовании клеточных мембран, миелиновых оболочек, соединительной ткани и др.
   Синтез жирных кислот, необходимых для структурных липидов организма, происходит преимущественно за счет ПНЖК пищи. Биологическая роль линоленовой кислоты заключается в том, что она предшествует в организме биосинтезу арахидоновой кислоты. Последняя в свою очередь предшествует образованию простагландинов – тканевых гормонов.
   Установлена важная роль ПНЖК в холестериновом обмене. При недостаточности ПНЖК происходит этерификация холестерина с насыщенными жирными кислотами, что способствует формированию атеросклеротического процесса.
   При недостатке ПНЖК снижаются интенсивность роста и устойчивость к неблагоприятным внешним и внутренним факторам, угнетается репродуктивная функция, появляется склонность к возникновению тромбоза коронарных сосудов. ПНЖК оказывают нормализующее действие на клеточную стенку кровеносных сосудов, повышая ее эластичность и снижая проницаемость.
   ПНЖК являются эссенциальными несинтезируемыми веществами, но превращение одних жирных кислот в другие возможно.
   Оптимальной в биологическом отношении формулой сбалансированности жирных кислот в жире может служить следующее соотношение: 10 % ПНЖК, 30 % насыщенных жирных кислот и 60 % мононенасыщенной (олеиновой) кислоты.
   Суточная потребность в ПНЖК при сбалансированном питании составляет 2—6 г, что обеспечивается 25—30 г растительного масла.
   Фосфолипиды – биологически активные вещества, входящие в структуру клеточных мембран и участвующие в транспорте жира в организме. В молекуле фосфолипидов глицерин этерифицирован ненасыщенными жирными кислотами и фосфорной кислотой. Типичным представителем фосфолипидов в продуктах питания является лецитин, хотя схожим биологическим действием обладают кефалин и сфингомиелин.
   Фосфолипиды представлены в нервной ткани, ткани мозга, сердца, печени. Фосфолипиды синтезируются в организме в печени и почках.
   Лецитин участвует в регулировании холестеринового обмена, способствуя его расщеплению и выведению из организма. В норме его содержание в крови 150—200 мг%, а коэффициент лецитин / холестерин равен 0,9—1,4. Потребность в фосфолипидах составляет для взрослого человека 5 г в сутки и удовлетворяется за счет эндогенных фосфолипидов, образующихся из предшественников полной деградации.
   Фосфолипиды особенно важны в питании пожилых людей, так как обладают выраженным липотропным, антиатеросклеротическим действием.
   Стерины – гидроароматические спирты сложного строения, относящиеся к группе неомыляемых веществ нейтрального характера. Содержание в животных жирах – зоостерины – 0,2—0,5 г на 100 г продукта, в растительных – фотостерины – 6,0—17,0 г на 100 г продукта.
   Фитостерины играют важную роль в нормализации холестеринового и жирового обмена. Их представителями являются ситостерины, образующие нерастворимые невсасывающие комплексы с холестерином. Основным источником β-ситостерина, применяемого с лечебной и профилактической целью при атеросклерозе, являются кукурузное масло (400 мг на 100 г масла), хлопковое (400 мг), соевое, арахисовое, оливковое (по 300 мг) и подсолнечное масло (200 мг).
   Из зоостеринов основное значение имеет холестерин. Из продуктов питания больше всего его в головном мозге – 4 %, хотя он широко представлен во всех пищевых продуктах животного происхождения. Холестерин обеспечивает удержание влаги клеткой и придает ей необходимый тургор. Участвует в образовании ряда гормонов, в том числе и половых, участвует в синтезе желчи, а также нейтрализует яды: гемолитические, паразитарные, бактериальные.
   Холестерин рассматривают и как фактор, участвующий в формировании и развитии атеросклероза. Однако имеются исследования, выдвигающие здесь на первый план повышенное потребление животных жиров, богатых твердыми, насыщенными жирными кислотами.
   Основной биосинтез холестерина происходит в печени и зависит от характера поступающего жира. При поступлении насыщенных жирных кислот биосинтез холестерина в печени повышается и, наоборот, при поступлении ПНЖК – снижается.
   В состав жиров входят также витамины A, D, Е, а также пигменты, часть которых обладает биологической активностью (каротин, госсипол и др.).
   Потребность в нормировании жиров
   Суточная потребность взрослого человека в жирах составляет 80—100 г/сутки, в том числе растительного масла – 25—30 г, ПНЖК – 3—6 г, холестерина – 1 г, фосфолипидов – 5 г. В пище жир должен обеспечить 33 % суточной энергетической ценности рациона. Это для средней зоны страны, в северной климатической зоне эта величина составляет 38—40 %, а в южной – 27—28 %.

ЛЕКЦИЯ № 11. Значение углеводов и минеральных веществ в питании человека

Значение углеводов в питании

   Углеводы являются основной составной частью пищевого рациона. За счет углеводов обеспечивается не менее 55 % суточной калорийности. (Вспомним соотношение основных питательных веществ по калорийности в сбалансированном рационе – белки, жиры и углеводы – 120 ккал : 333 ккал : 548 ккал – 12 % : 33 % : 55 % – 1 : 2,7 : 4,6). Основное назначение углеводов – компенсация энергозатрат. Углеводы являются источником энергии при всех видах физической работы. При сгорании 1 г углеводов образуется 4 ккал. Это меньше, чем у жиров (9 ккал). Однако в сбалансированном питании наблюдается преобладание углеводов: 1 : 1,2 : 4,6; 30 г : 37 г : 137 г. При этом среднесуточная потребность в углеводах составляет 400—500 г. Углеводы как источник энергии обладают способностью окисляться в организме как аэробным, так и анаэробным путем.
   Углеводы входят в состав клеток и тканей организма, и таким образом в какой-то мере участвуют в пластических процессах. Несмотря на постоянное расходование клетками и тканями своих углеводов на энергетические цели, содержание в них этих веществ поддерживается на постоянном уровне при условии достаточного их поступления с пищей.
   Углеводы тесно связаны с обменом жира. При больших физических нагрузках, когда расход энергии не покрывается углеводами пищи и углеводными запасами организма, происходит образование сахара из жира, который находится в жировом депо. Однако чаще наблюдается обратное влияние, т. е. образование новых количеств жира и пополнение ими жировых депо организма за счет избыточного поступления углеводов с пищей. При этом превращение углеводов идет не по пути полного окисления до воды и углекислого газа, а по пути превращения в жир. Избыток потребления углеводов – широко распространенное явление, лежащее в основе формирования избыточной массы тела.
   Обмен углеводов тесно связан и с обменом белка. Так, недостаточное поступление углеводов с пищей при интенсивной физической нагрузке вызывают усиленный расход белка. Наоборот, при ограниченных белковых нормах введением достаточного количества углеводов можно добиться минимального расходования белка в организме.
   Некоторые углеводы обладают и выраженной биологической активностью, выполняя специализированные функции. Это гетерополисахариды крови, определяющие группы крови, гепарин, предотвращающий образование тромбов, аскорбиновая кислота, обладающая С-витаминными свойствами, маркерная специфичность за счет углеводсодержащих компонентов в ферментах, гормонах и др.
   Основным источником углеводов в питании являются растительные продукты, в которых углеводы составляют не менее 75 % сухого вещества. Значение животных продуктов как источников углеводов невелико. Основной животный углевод – гликоген, обладающий свойствами крахмала, содержится в животных тканях в небольших количествах. Другой животный углевод – лактоза (молочный сахар) – содержится в молоке в количестве 5 г на 100 г продукта (5 %).
   В целом усвояемость углеводов достаточно высока и составляет 85—98 %. Так, коэффициент усвояемости углеводов овощей составляет 85 %, хлеба и круп – 95 %, молока – 98 %, сахара – 99 %.

Химическая структура и классификация углеводов

   Само называние «углеводы», предложенное в 1844 г. К. Шмидтом, основано на том, что в химической структуре этих веществ атомы углерода сочетаются с атомами кислорода и водорода в таких же соотношениях, как в составе воды. Например, химическая формула глюкозы С6(Н2О)6, сахарозы С12(Н2О)11, крахмала С5(Н2О)n. В зависимости от сложности строения, растворимости, быстроты усвоения и использования для гликогенообразования углеводы могут быть представлены в виде следующей классификационной схемы:
   1) простые углеводы (сахара):
   а) моносахариды: глюкоза, фруктоза, галактоза;
   б) дисахариды: сахароза, лактоза, мальтоза;
   2) сложные углеводы: полисахариды (крахмал, гликоген, пектиновые вещества, клетчатка).

Значение простых и сложных углеводов в питании

   Простые углеводы. Моносахариды и дисахариды характеризуются легкой растворимостью в воде, быстрой усвояемостью (всасываемостью) и выраженным сладким вкусом.
   Моносахариды (глюкоза, фруктоза, галактоза) – это гексозы, имеющие в своей молекуле 6 атомов углерода, 12 атомов водорода и 6 атомов кислорода. В пищевых продуктах гексозы находятся в неусвояемой α– и β-формах. Под действием ферментов поджелудочной железы гексозы переходят в усвояемую форму. При отсутствии гормона (например, инсулина при диабете) гексозы не усваиваются и выводятся с мочой.
   Глюкоза в организме быстро превращается в гликоген, идущий на питание тканей мозга, сердечной мышцы, поддержания сахара в крови. В связи с этим глюкоза применяется для поддержания послеоперационных, ослабленных и тяжело больных.
   Фруктоза, обладая теми же свойствами, что и глюкоза, медленнее усваивается в кишечнике и быстро покидает кровяное русло. Обладая большей сладостью, чем глюкоза и сахароза, фруктоза позволяет снизить потребление сахаров, а следовательно, и калорийность рациона. При этом сахар меньше переходит в жир, что благоприятно влияет на жировой и холестериновый обмен. Употребление фруктозы является профилактикой кариеса и гнилостных колитов кишечника, она применяется для питания детей и пожилых людей.
   Галактоза в свободном виде в пищевых продуктах не встречается, а является продуктом расщепления лактозы.
   Источником гексоз являются фрукты, ягоды и другая растительная пища.
   Дисахариды. Из них в питании имеют значение сахароза (тростниковый или свекловичный сахар) и лактоза (молочный сахар). При гидролизе сахароза распадается до глюкозы и фруктозы, а лактоза – до глюкозы и галактозы. Мальтоза (солодовый сахар) – продукт расщепления крахмала и гликогена в желудочно-кишечном тракте. В свободном виде встречается в меде, солоде и пиве.
   Больше всего из дисахаров употребляется сахар – до 40—45 кг в год, избыточное количество которого оказывает влияние на развитие атеросклероза, ведет к гипергликемии.
   Сложные углеводы, или полисахариды, характеризуются сложностью молекулярного строения и плохой растворимостью в воде. К ним относят крахмал, гликоген, целлюлоза (клетчатка) и пектиновые вещества. Два последних полисахарида относят к пищевым волокнам.
   Крахмал. На его долю в пищевом рационе человека приходится до 80 % общего количества потребляемых углеводов. Источником крахмала являются зерновые продукты, бобовые и картофель. Крахмал в организме проходит целую стадию превращений полисахаридов: сначала до декстринов (под действием ферментов амилазы, диастазы), затем до мальтозы и конечного продукта – глюкозы (под действием фермента мальтазы). Этот процесс сравнительно медленный, что создает благоприятные условия для полного использования крахмала. Поэтому при средних энергетических затратах организм обеспечивается сахаром в основном за счет крахмала пищи. При значительных энергетических затратах возникает необходимость введения сахаров, являющихся источником быстрого гликогенообразования. Необходимость параллельного использования крахмала и сахара допускается тем, что крахмал пищи не удовлетворяет потребности организма в ощущении вкуса. При средних энергетических затратах (2500—3000 ккал) количество сахара в рационе взрослого составляет 15 % от общего количества углеводов, для детей и юношей – 25 %. Суточная потребность сахара составляет 50—80 г. Сбалансированное поступление крахмала и сахара в составе пищи обеспечивает благоприятные условия для поддержания нормального уровня сахара в крови.
   Гликоген (животный крахмал). Присутствует в животной ткани, в печени до 230 % от сырого веса, в мышцах – до 4 %. В организме расходуется для энергетических целей. Его восстановление происходит путем ресинтеза гликогена за счет глюкозы крови.
   Пектиновые вещества – коллоидные полисахариды, гемицеллюлоза (желирующее вещество). Различают два вида этих веществ: протопектины (нерастворимые в воде соединения пектина и целлюлозы) и пектины (растворимые вещества). Пектины под действием пектиназы подвергаются гидролизу до сахара и тетрагалактуроновой кислоты. При этом от пектина отщепляется метоксильная группа (ОСН3), и образуются пектиновая кислота и метильный спирт. Способность пектиновых веществ преобразовываться в водных растворах в присутствии кислоты и сахара в желеобразную, коллоидную массу широко используется в пищевой промышленности. Сырьем для пектинов служат отходы яблок, подсолнечника и арбузов.
   Пектины благотворно влияют на процессы пищеварения. Они оказывают детоксирующее действие при отравлении свинцом, находят применение при лечебно-профилактическом питании.
   Клетчатка (целлюлоза) по своей структуре весьма близка к полисахаридам. Организм человека почти не продуцирует ферментов, расщепляющих целлюлозу. В небольшом количестве эти ферменты выделяют бактерии нижних отделов пищеварительного тракта (слепая кишка). Клетчатка расщепляется под действием фермента целлюлазы с образованием растворимых соединений, которые активно выводят холестерин из организма. Чем нежнее клетчатка (картофель), тем полнее она расщепляется.
   Значение клетчатки состоит:
   1) в стимулировании перистальтики кишечника за счет сорбции воды и увеличения объема каловых масс;
   2) способности выведения из организма холестерина за счет сорбции стеринов и препятствия их обратного всасывания;
   3) в нормализации микрофлоры кишечника;
   4) способности вызывать чувство сытости.
   Суточная потребность клетчатки и пектиновых веществ составляет около 25 г.
   За последнее время роли пищевых волокон (целлюлозы, пектина, камеди, или гумми и других балластных веществ растительного происхождения) в питании стали придавать большее значение. Рафинированные продукты (сахар, мука тонкого помола, соки) полностью освобождены от пищевых волокон, которые плохо перевариваются и всасываются в желудочно-кишечный тракт. Однако не следует забывать, что некоторые виды пищевых волокон удерживают воды в 5—30 раз больше, чем их собственная масса. В результате значительно увеличивается объем каловых масс, ускоряется их передвижение по кишечнику и опорожнение толстой кишки. Последнее крайне полезно для больных с гипомоторной дискинезией и синдромом запора. Пищевые волокна изменяют состав кишечной микрофлоры, увеличивая общее число микробов при одновременном снижении количества кишечных палочек. Важным свойством пищевых продуктов с высоким содержанием пищевых волокон является их низкая калорийность при значительном объеме продукта. Вместе с тем избыточное потребление пищевых волокон может привести к уменьшению всасывания некоторых минеральных веществ (кальция, марганца, железа, меди, цинка).
   Основным источником пищевых волокон являются зерновые продукты, фрукты и овощи. Наиболее высоким уровнем пищевых волокон характеризуются ржаной хлеб грубого помола, горох, бобовые, овсяная крупа, капуста, малина, черная смородина. Больше всего пищевых волокон в отрубях. В пшеничных отрубях содержится 45—55 % пищевых волокон, из них 28 % – гемицеллюлозы, 9,8 % целлюлозы, 2,2 % пектина. 3/4 всех биологически активных веществ содержится в отрубях. Добавление к суточному рациону 2—3 ст. л. отрубей в достаточной степени усиливает моторно-эвакуационную функцию толстой кишки, желчного пузыря, уменьшают возможность камнеобразования в желчном пузыре, сдерживает повышение сахара крови после еды при сахарном диабете.
   Камеди широко используют в пищевой промышленности для придания растворам вязкости. Их получают из некоторых растений и используют для кристаллизации сахара, изготовления жевательной резинки. Имеются данные, что гумми снижают кислотность желудочного сока и замедляют опорожнение желудка у больных язвенной болезнью двенадцатиперстной кишки. Камеди повышают чувство насыщения, позволяют уменьшить калорийность пищевого рациона, что имеет значение в диетотерапии ожирения.
   Суммарный уровень пищевых волокон для организма составляет около 25 г в сутки. При некоторых заболеваниях (запорах, дискинезии желчного пузыря, гиперхолестеринемии, сахарном диабете) необходимо увеличить содержание пищевых волокон в рационе до 40—60 г в сутки.
   При построении рационов следует иметь в виду, что потребление продуктов, богатых крахмалом, а также фруктов и овощей, содержащих сахара, имеет преимущество перед приемом такого высококалорийного продукта, как сахар и кондитерские изделия, поскольку с первой группой продуктов человек получает не только углеводы, но и витамины, и минеральные соли, микроэлементы и пищевые волокна. Сахар же является носителем «голых», или пустых, калорий и характеризуется лишь высокой энергетической ценностью. Поэтому квота сахара в суточном рационе не должна превышать 10—20 % (50—100 г в сутки).

Потребность и нормирование углеводов

   Потребность в углеводах определяется величиной энергетических затрат, т. е. характером труда, возрастом и т. д. Средняя потребность в углеводах для лиц, не занятых тяжелым физическим трудом, равна 400—500 г в сутки, в том числе крахмала – 350—400 г, моно– и дисахаридов – 50—100 г, пищевых волокон (клетчатки и пектина) – 2 г. Нормирование углеводов должно производиться соответственно энергетической ценности суточного пищевого рациона. На каждую мегакалорию предусматривается 137 г углеводов.
   Основным источником углеводов для детей должны быть фрукты, ягоды, соки, молоко (лактоза), сахароза. Количество сахара в детском питании не должно превышать 20 % общего количества углеводов. Резкое преобладание в рационе ребенка углеводов нарушает обмен и снижает устойчивость организма к инфекциям (возможны отставание в росте, общем развитии, ожирение).

Минеральные вещества. Роль и значение в питании человека

   Ф. Ф. Эрисман писал: «Пища, не содержащая минеральных солей и удовлетворительная по другим показателям, ведет к медленной голодной смерти, так как обеднение организма солями неминуемо ведет к расстройству питания».
   Минеральные вещества участвуют во всех физиологических процессах:
   1) пластических – формировании и построении тканей, в построении костей скелета, где кальций и фосфор являются основными структурными компонентами (в организме более 1 кг кальция и 530—550 г фосфора);
   2) поддержании кислотно-щелочного равновесия (кислотность сыворотки не более 7,3—7,5), создании концентрации водородных ионов в ткани, клетках, межклеточных жидкостях, придавая им определенные осмотические свойства;
   3) в формировании белка;
   4) в функциях эндокринных желез (и особенно йод);
   5) в ферментативных процессах (каждый четвертый фермент – металлофермент);
   6) в нейтрализации кислот и предупреждении развития ацидоза;
   7) нормализации водно-солевого обмена;
   8) поддержании защитных сил организма.
   В теле человека обнаружено более 70 химических элементов, из них более 33 – в крови. Кислотно-щелочное равновесие изменяется под влиянием характера питания. Поступление с пищей (бобовыми, овощами, фруктами, ягодами, молочными продуктами) кальция, магния, натрия повышает щелочную реакцию и способствует развитию алкалоза. Поступление с пищей (мясными и рыбными продуктами, яйцами, хлебом, крупами, мукой) хлор-иона, фосфора, серы увеличивает кислотную реакцию – ацидоз. Даже при смешанном характере питания в организме наблюдается сдвиг в сторону ацидоза. Поэтому необходимо вводить в рацион обязательно фрукты, овощи и молоко.
   С учетом вышесказанного минеральные вещества делятся на вещества:
   1) щелочного действия (катионы) – натрий, кальций, магний, калий;
   2) кислотного действия (анионы) – фосфор, сера, хлор.

Макро– и микроэлементы, их роль и значение

   Условно все минеральные вещества дополнительно делят по уровню содержания в продуктах (десятки и сотни мг%) и высокой суточной потребности на макро– (кальций, магний, фосфор, калий, натрий, хлор, сера) и микроэлементы (йод, фтор, никель, кобальт, медь, железо, цинк, марганец и др.).
   Кальций – микроэлемент, участвующий в формировании костей скелета. Это основной структурный компонент кости. Кальция в костях содержится 99 % от общего его количества в организме. Кальций – это постоянная составная часть крови, клеточных и тканевых соков. Он входит в состав яйцеклетки. Кальций укрепляет защитные функции организма и повышает устойчивость к внешним неблагоприятным факторам. Кальций, являясь элементом щелочного действия, предупреждает развитие ацидоза. Кальций нормализует нервно-мышечную возбудимость (понижение содержания кальция может привести к возникновению тетанических судорог). В биологических жидкостях (плазме, тканях) кальций содержится в ионизированном состоянии.
   Обмен кальция характеризуется тем, что при его недостатке в пище он продолжает выделяться из организма в больших количествах за счет запасов. Создается отрицательный баланс кальция в организме. У растущих детей скелет полностью обновляется за 1—2 года, у взрослых – за 10—12 лет. У взрослого человека за сутки из костей выводится до 700 мг кальция и столько же откладывается вновь.
   Кальций – трудноусваиваемый элемент, так как в пищевых продуктах он находится в трудно– или нерастворимом состоянии. В кислом содержимом желудка рН = 1 (0,1 Т кислота) кальций переходит в растворимые соединения. Но в тонком кишечнике (кислотность резко щелочная) кальций вновь переходит в труднорастворимые соединения и только под воздействием желчных кислот вновь легко усваивается организмом.
   Усвояемость кальция зависит от соотношения его с другими компонентами: жиром, магнием и фосфором. Хорошее усвоение кальция наблюдается, если на 1 г жира приходится 10 мг кальция, поступающего с пищей. Это объясняется тем, что кальций образует с жирными кислотами соединения, которые, взаимодействуя с желчными кислотами, образуют комплексное, хорошо усвояемое соединение. При избытке жира в пищевом рационе ощущается недостаток желчных кислот для перевода кальция солей жирных кислот в растворимые состояния, и их большая часть выделяется с калом.
   Отрицательное влияние на всасывание кальция оказывает избыток магния, так как для его усвоения тоже требуется его соединение с желчными кислотами. Таким образом, чем больше поступает в организм магния, тем меньше остается желчных кислот для кальция. Поэтому увеличение количества магния в пищевом рационе усиливает выведение кальция из организма; в суточном рационе магния должно содержаться наполовину меньше, чем кальция. Суточная потребность в кальции составляет 800 мг, а магния – 400 мг.
   Содержание фосфора влияет на усвоение кальция. Кальций с фосфором в организме образует соединение Са3РО4 – кальциевую соль фосфорной кислоты. Это соединение под действием желчных кислот мало растворяется и всасывается, т. е. значительное увеличение фосфора в пище ухудшает баланс кальция и приводит к уменьшению всасывания кальция и увеличению выведения кальция. Оптимальное усвоение кальция происходит при соотношении кальция и фосфора как 1 : 1,5 или 800 : 1200 мг. Для детей это соотношение кальция и фосфора выглядит как 1 : 1. Процесс окостенения в растущем организме идет нормально при правильном соотношении кальция и фосфора. Так как в пищевом рационе это соотношение часто бывает неоптимально, то назначают специальные регуляторы (например, витамин D, который способствует усвоению кальция и задержанию его в организме). Важным рахитогенным фактором является и белково-витаминный (полноценный белок и витамины А, В1 и В6) баланс. Всасыванию кальция способствуют белки пищи, лимонная кислота и лактоза. Аминокислоты белков образуют с кальцием хорошо растворимые комплексы. Аналогичен механизм действия лимонной кислоты. Лактоза, сбраживаясь в кишечнике, поддерживает значение кислотности, что препятствует образованию нерастворимых фосфорно-кальциевых солей.
   Лучшим источником кальция в питании человека являются молоко и молочные продукты. 0,5 л молока или 100 г сыра обеспечивают суточной потребности в кальции. Составляя суточные рационы, необходимо принимать во внимание не столько общее количество кальция, сколько условия, обеспечивающие его оптимальное усвоение. Необходимо учитывать и тот факт, что вода – тоже важный источник кальция. Здесь кальций находится в виде иона и усваивается на 90—100 %. Суточная потребность кальция для всех категорий – 800 мг. Детям до 1 года – 250—600 мг, 1—7 лет – 800—1200 мг, 7—17 лет – 1200—1500 мг.
   Фосфор – жизненно необходимый элемент. В организме человека содержится от 600 до 900 г фосфора. Фосфор участвует в процессах обмена и синтеза белков, жиров и углеводов, оказывает влияние на деятельность скелетной мускулатуры и сердечной мышцы. Исключительно важны метаболические функции фосфора. Входя в состав ДНК и РНК, он принимает участие в процессах кодирования, хранения и использования генетической информации. Значение фосфора в энергетическом обмене обусловлено не только ролью АТФ, но и тем, что все превращения углеводов (гликолиз, пентозные циклы) происходят не в свободной, а фосфорилированной форме). Фосфор играет существенную роль в поддержании кислотно-щелочного состояния кислотности плазмы крови в пределах 7,3—7,5. Фосфору принадлежит ведущая роль в функции центральной нервной системы. Фосфорные кислоты участвуют в построении ферментов, катализаторов процесса распада органических веществ пищи, создающих условия для использования потенциальной энергии.
   Потребность в фосфоре возрастает при физической нагрузке и при недостатке белков в рационе.
   Усвояемость фосфора связана с усвоением кальция, содержанием белков в рационе и другими сопутствующими факторами. Соотношение фосфора к белкам составляет 1 : 40. Фосфор с белками и полиненасыщенные жирные кислоты образуют комплексные соединения, отличающиеся большой биологической активностью. Отсутствие в кишечнике человека фитазы делает невозможным всасывание фосфора фитиновой кислоты, в виде которой находится значительная его часть в растительных продуктах. Эффективность всасывания фосфора зависит от их расщепления кишечными фосфатазами и обычно составляет 40—70 %. Фосфор выводится из организма с мочой (до 60 %) и калом. Выделение его с мочой увеличивается при голодании и после усиленной мышечной работы.
   Наибольшее количество фосфора находится в молочных продуктах, особенно в сырах (до 600 мг%), а также в яйцах (в желтке 470 мг%). Высоким содержанием фосфора отличаются и некоторые растительные продукты (бобовые – фасоль, горох – содержат до 300—500 мг%. Хорошими источниками фосфора являются мясо, рыба, икра. Суточная потребность в фосфоре составляет 1200 мг.
   Магния в организме содержится до 25 г. Его биологическая роль изучена недостаточно. Однако хорошо известна его роль в процессе углеводного и фосфорного обмена. Магний нормализует возбудимость нервной системы, обладает антиспастическим и сосудорасширяющим свойствами, стимулирует перистальтику кишечника, повышает желчевыделение, участвует в нормализации женских специфических функций, снижает уровень холестерина, обладает антибластогенным действием (в местностях, где магний содержится в почве и в воде в больших количествах, меньше смертность от злокачественных новообразований).
   Источниками магния являются хлеб, крупа, горох, фасоль, гречневая крупа. Его мало в молоке, овощах, фруктах и яйцах. Суточная потребность для женщин составляет 500 мг, для мужчин – 400 мг.
   Сера – структурный компонент некоторых аминокислот (метионин, цистин), витаминов и инсулина. Содержится преимущественно в продуктах животного происхождения. Суточная потребность в сере составляет для взрослых 1 г.
   Велика роль хлорида натрия в питании здорового и больного человека. Организм человека содержит около 250 г хлорида натрия. Более 50 % этого количества находится во внеклеточной жидкости и костной ткани, и только 10 % – внутри клеток мягких тканей. И, наоборот, ионы калия локализуются внутри клеток. Они отвечают за поддержание постоянства объема жидкости в организме, транспорт аминокислот, сахаров, калия, а также секрецию соляной кислоты в желудке.
   Ионы натрия, хлора и калия поступают с хлебом, сыром, мясом, овощами, концентратами и минеральной водой. Выводятся с мочой (до 95 %). При этом за ионами натрия следуют ионы хлора.
   Богатая калием пища вызывает повышенное выделение натрия. И, наоборот, потребление в большом количестве натрия приводит к потере организмом калия. Выведение натрия почками регулируется гормоном альдостероном. Значительные нарушения баланса хлорида натрия могут возникнуть при поражении надпочечников, хронических заболеваниях почек.
   Потребность в суточном рационе хлорида натрия составляет 10—12 г, при работе в горячих цехах, при большой физической нагрузке – 20 г. Бессолевая диета назначается при заболеваниях сердечно-сосудистой системы с нарушениями кровообращения II и III степеней, остром и хроническом нефрите, гипертонической болезни II—III степеней.
   Суточная потребность в натрии составляет 4000—6000 мг, в хлоре – 5000—7000 мг, в калии – 2500—5000 мг.
   Биомикроэлементы участвуют в кроветворении.
   Железо является незаменимой частью гемоглобина и миоглобина. 60 % железа сосредоточено в гемоглобине. Другая важная сторона железа – участие в окислительных процессах, так как оно входит в состав ферментов: пероксидазы, цитохромоксидазы и др.
   Недостаток железа ведет к железодефицитной анемии. В организме взрослого содержится до 4 г железа (2,5 г из них – в гемоглобине). Железо депонируется в клетках ретикуло-эндотелиальной системы (печени, селезенке, костном мозге). Наиболее богаты железом печень, кровавые колбасы, зернобобовые, гречневая крупа. Всасывание железа в организме затруднено из-за его связывания фитиновой кислотой. Хорошо всасывается железо мясных продуктов. Железо в легкоусвояемой форме в растительных продуктах содержится в чесноке, свекле, яблоках и др.
   Потребность в железе составляет 10 мг для мужчин и 18—20 мг в сутки для женщин.
   Медь активно участвует в синтезе гемоглобина, входит в состав цитохромоксидазы. Медь необходима для превращения железа в органическую связанную форму, способствует переносу железа в костный мозг. Медь обладает инсулиноподобным действием. Под влиянием приема 0,5—1 мг меди у больных диабетом улучшается состояние, снижается гипергликемия, исчезает глюкозурия. Установлена связь меди с функцией щитовидной железа. При тиреотоксикозе содержание меди в крови повышается. Суточная потребность для взрослых составляет 2—3 мг, для детей раннего возраста – 80 мкг/кг, старшего детского возраста – 40 мкг/кг.
   Содержание меди наиболее высоко в печени, зернобобовых, продуктах моря, орехах. Его нет в молочных продуктах.
   Кобальт – третий биомикроэлемент, участвующий в кроветворении, что проявляется при достаточно высоком уровне меди. Кобальт влияет на активность фосфатаз кишечника, является основным материалом для синтеза в организме витамина В12.
   В наибольшем количестве кобальт содержится в поджелудочной железе и участвует в образовании инсулина. В природных пищевых продуктах его содержание невелико. В достаточном количестве он содержится в речной и морской воде, водорослях, рыбе. Суточная потребность составляет 100—200 мкг.
   Биомикроэлементы, связанные с костеобразованием: марганец – 5—10 мг/сутки и стронций до 5 мг/сутки.
   Биомикроэлементы, связанные с эндемическими заболеваниями: йод – 100—200 мкг/сутки (эндемический зоб), фтор – предельно допустимый коэффициент в воде составляет 1,2 мг/л, в пище – 2,4—4,8 мг/кг пищевого рациона.

ЛЕКЦИЯ № 12. Производственные вредности физической природы, профессиональные вредности ими обусловленные, их профилактика

Гигиеническая характеристика шума, его нормирование и меры профилактики негативного влияния его на организм

   Шумом называется беспорядочное сочетание звуков различной высоты и громкости, вызывающее неприятное субъективное ощущение и объективные изменения органов и систем.
   Шум состоит из отдельных звуков и имеет физическую характеристику. Волновое распространение звука характеризуется частотой (выражается в герцах) и силой, или интенсивностью, т. е. количеством энергии, переносимой звуковой волной в течение 1 с через 1 см2 поверхности, перпендикулярной к направлению распространения звука. Сила звука измеряется в энергетических единицах, чаще всего в эргах в секунду на 1 см2. Эрг равен силе в 1 дину, т. е. силе, сообщаемой массе, весом в 1 г ускорение в 1 см2/с.
   Поскольку отсутствуют способы непосредственного определения энергии звуковых колебаний, измеряется давление, производимое на тела, на которые они падают. Единицей звукового давления является бар, отвечающий силе в 1 дину на 1 см2 поверхности и равной 1/1 000 000 доле атмосферного давления. Речь обычной громкости создает давление в 1 бар.
   Восприятие шума и звука
   Человек способен воспринимать как звук колебания с частотой от 16 до 20 000 Гц. С возрастом чувствительность звукового анализатора уменьшается, и в преклонном возрасте колебания с частотой выше 13 000—15 000 Гц не вызывают слухового ощущения.
   Субъективно частота, ее увеличение воспринимаются как повышение тона, высоты звука. Обычно основной тон сопровождается целым рядом дополнительных звуков (обертонов), возникающих благодаря колебанию отдельных частей звучащего тела. Количество и сила обертонов создают определенную окраску, или тембр, сложного звука, благодаря чему удается распознать звуки музыкальных инструментов или голоса людей.
   Чтобы вызвать слуховое ощущение, звуки должны обладать определенной силой. Наименьшая сила звука, которая воспринимается человеком, называется порогом слышимости данного звука.
   Пороги слышимости для звуков с различной частотой неодинаковы. Наименьшие пороги имеют звуки с частотой от 500 до 4000 Гц. За пределами этого диапазона пороги слышимости повышаются, что свидетельствует о снижении чувствительности.
   Увеличение физической силы звука субъективно воспринимается как повышение громкости, однако это происходит до определенного предела, выше которого ощущается болезненное давление в ушах – порог болевого ощущения, или порог осязания. При постепенном усилении энергии звука от порога слышимости до болевого порога обнаруживаются особенности слухового восприятия: ощущение громкости звука увеличивается не пропорционально росту его звуковой энергии, а значительно медленнее. Так, чтобы ощутить едва заметное приращение громкости звука, необходимо увеличить его физическую силу на 26 %. По закону Вебера—Фехнера ощущение нарастает пропорционально не силе раздражения, а логарифму его силы.
   Звуки разных частот при одной и той же физической их интенсивности ощущаются ухом не как одинаково громкие. Высокочастотные звуки ощущаются как более громкие, чем низкочастотные.
   Для количественной оценки звуковой энергии предложена особая логарифмическая шкала уровней силы звука в белах или децибелах. В этой шкале за нуль, или исходный уровень, условно принята сила (10-9 эрг/см2 × сек, или 2 × 10-5 Вт/см2/с), приблизительно равная порогу слышимости звука с частотой 1000 Гц, который в акустике принимается за стандартный звук. Каждая ступень такой шкалы, получившая название бел, соответствует изменению силы звука в 10 раз. Увеличение силы звука в 100 раз по логарифмической шкале обозначается как повышение уровня силы звука на 2 бела. Приращение уровня силы звука на 3 бела соответствует увеличению абсолютной силы его в 1000 раз и т. д.
   Таким образом, чтобы определить уровень силы любого звука или шума в белах, следует разделить его абсолютную силу на силу звука, принятую за уровень сравнения, и вычислить десятичный логарифм этого соотношения.
   где I1 – абсолютная сила;
   I0 – сила звука уровня сравнения.
   Если выразить в белах громадный диапазон силы звука с частотой 1000 Гц от порога слышимости и (нулевой уровень) до болевого порога, то весь диапазон по логарифмической шкале составит 14 бел.
   В связи с тем, что орган слуха способен различать прирост звука в 0,1 бел, то на практике при измерении звуков применяется децибел (дБ), т. е. единица в 10 раз меньшая, чем бел.
   В связи с особенностью восприятия слухового анализатора звук одинаковой громкости будет восприниматься человеком от источников шума с различными физическими параметрами. Так, звук силой в 50 дБ и частотой 100 Гц будет восприниматься как одинаково громкий со звуком с силой 20 дБ и частотой 1000 Гц.
   Чтобы иметь возможность сравнивать между собой различные по частотному составу звуки различной силы в отношении их громкости, введена специальная единица громкости, называемая «фон». При этом за единицу сравнения принят звук в 1000 Гц, который считается стандартным. В нашем примере звук в 50 дБ и частотой 100 Гц будет равен 20 фонам, поскольку соответствует звуку с силой 20 дБ и частотой 1000 Гц.
   Уровень шума, не вызывающий вредных последствий для уха работающих, или так называемый нормальный предел громкости при частоте 1000 Гц, соответствует 75—80 фонам. При повышении частоты колебаний звука по сравнению со стандартным предел громкости должен быть снижен, так как вредное воздействие на орган слуха увеличивается с повышением частоты колебаний.
   Если тоны, составляющие шум, располагаются непрерывно в широком диапазоне частот, то такие шумы называют непрерывными, или сплошными. Если при этом сила звуков, составляющих шум, примерно одинакова, такой шум называют белым по аналогии с «белым светом», характеризующимся сплошным спектром.
   Определение и нормирование шумов проводятся обычно в частотной полосе, равной октаве, полуоктаве или трети октавы. За октаву принимают диапазон частот, в которой верхняя граница частоты вдвое больше нижней (например, 40—80, 80—160 и т. д.). Для обозначения октавы обычно указывают не диапазон частот, а так называемые среднегеометрические частоты. Так, для октавы 40—80 Гц среднегеометрическая частота – 62 Гц, для октавы 80—160 Гц – 125 Гц и т. д.
   По спектральному составу все шумы делят на 3 класса.
   Класс 1. Низкочастотные (шумы тихоходных агрегатов неударного действия, шумы, проникающие сквозь звукоизолирующие преграды). Наибольшие уровни в спектре расположены ниже частоты 300 Гц, за ним следует понижение (не менее чем на 5 дБ на октаву).
   Класс 2. Среднечастотные шумы (шумы большинства машин, станков и агрегатов неударного действия). Наибольшие уровни в спектре расположены ниже частоты 800 Гц, и далее опять понижение не менее чем на 5 дБ на октаву.
   Класс 3. Высокочастотные шумы (звенящие, шипящие, свистящие шумы, характерные для агрегатов ударного действия, потоков воздуха и газа, агрегатов, действующих с большими скоростями). Наименьший уровень шума в спектре расположен выше 800 Гц.
   Различают шумы:
   1) широкополосные с непрерывным спектром более 1 октавы;
   2) тональные, когда интенсивность шума в узком диапазоне частот резко преобладает над остальными частотами.
   По распределению звуковой энергии во времени шумы подразделяются:
   1) постоянные, уровень звука которых за 8-часовой рабочий день изменяются во времени не более чем на 5 дБ;
   2) непостоянные, уровень звука которых за 8-часовой рабочий день изменяются более чем на 5 дБ.
   Непостоянные шумы подразделяются на:
   1) колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;
   2) прерывистые, уровень звука которых ступенчато изменяются (на 5 дБ и более), причем длительность интервалов с постоянным уровнем составляет 1 с и более;
   3) импульсные, состоящие из одного или нескольких сигналов длительностью менее 1 с каждый, при этом уровень звука изменяется не менее чем на 7 дБ.
   Если после воздействия шума того или иного тона чувствительность к нему понижается (порог восприятия повышается) не более чем на 10—15 дБ, и восстановление ее происходит не более чем за 2—3 мин, следует думать об адаптации. Если изменение порогов значительно, и длительность восстановления затягивается, это свидетельствует о наступлении утомления. Основной формой профессиональной патологии, вызываемой интенсивным шумом, является стойкое понижение чувствительности к различным тонам и шепотной речи (профессиональная тугоухость и глухота).
   Влияние шума на организм
   Весь комплекс нарушений, развивающийся в организме при действии шума, можно объединить в так называемую шумовую болезнь (проф. Е. Ц. Андреева-Галанина). Шумовая болезнь – это общее заболевание всего организма, развивающееся в результате воздействия шума, с преимущественным поражением центральной нервной системы и слухового анализатора. Характерной особенностью шумовой болезни является то, что изменения в организме протекают по типу астеновегетативного и астеноневротического синдромов, развитие которых значительно опережает нарушения, возникающие со стороны слуховой функции. Клинические проявления в организме под влиянием шума подразделяются на специфические изменения в органе слуха и неспецифические – в других органах и системах.
   Регламентация шума
   Регламентация шума проводится с учетом его характера и условий труда, цели и назначения помещений, сопутствующих вредных производственных факторов. Для гигиенической оценки шума пользуются материалами: СН 2.2.4/2.1.8.5622-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».
   Для постоянного шума нормирование производится в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц. Для ориентировочной оценки допускается измерять в дБА Преимущество измерения шума в дБА заключается в том, что позволяет определять превышение допустимых уровней шума без спектрального анализа его в октавных полосах.
   При частотах 31,5 и 8000 Гц шум нормируется на уровне соответственно 86 и 38 дБ. Эквивалентный уровень звука в дБ(А) составляет 50 дБ. Для тонального и импульсного шума он на 5 дБ меньше.
   Для колеблющегося во времени и прерывистого шума максимальный уровень звука не должен превышать 110 дБ, а для импульсного шума максимальный уровень звука более 125 дБ.
   В отдельных отраслях производства применительно к профессиям нормирование ведется с учетом категории тяжести и напряженности. При этом выделяют 4 степени тяжести и напряженности, учитывая эргономические критерии:
   1) динамическую и статическую мышечную нагрузку;
   2) нервную нагрузку – напряжение внимания, плотность сигналов или сообщений в течение 1 ч, эмоциональное напряжение, сменность;
   3) напряжение анализаторной функции – зрение, объем оперативной памяти, т. е. число элементов, подлежащих запоминанию в течение 2 ч и более, интеллектуальное напряжение, монотонность работы.
   При малой напряженности, а также легкой и средней тяжести труда шум регламентируется на уровне 80 дБ. При той же напряженности (малой), но при тяжелой и очень тяжелой форме труда он на 5 дБ меньше. При умеренно напряженном труде, напряженном и очень напряженном шум нормируется соответственно на 10 дБ меньше, т. е. 70, 60 и 50 дБ.
   Степень потери слуха устанавливается по величине потери слуха на речевых частотах, т. е. по частоте 500, 1000 и 2000 Гц и на профессиональной частоте 4000 Гц. При этом выделяют 3 степени снижения слуха:
   1) легкое снижение – на речевых частотах снижение слуха происходит на 10—20 дБ, а на профессиональных – на 60 ± 20 дБ;
   2) умеренное снижение – на речевых частотах снижение слуха на 21—30 дБ, а на профессиональных – на 65 ± 20 дБ;
   3) значительное снижение – соответственно на 31 дБ и более, а на профессиональных частотах на 70 ± 20 дБ.

Меры по предупреждению вредного воздействия шума

   Технические меры борьбы с шумом многообразны:
   1) изменение технологии процессов и конструкции машин, являющихся источником шумов (замена шумных процессов бесшумными: клепки – сваркой, ковки и штамповки – обработкой давлением);
   2) тщательная пригонка деталей, смазка, замена металлических деталей незвучными материалами;
   3) поглощение вибрации деталей, применение звукопоглощающих прокладок, хорошая изоляция при установке машин на фундаменты;
   4) установка глушителей для поглощения шума выхлопа воздуха, газа или пара;
   5) звукоизоляция (шумоизолирование кабин, использование кожухов, дистанционного управления).
   Меры планировочного характера.
   1. Целесообразна планировка размещения шумящих производств на определенном расстоянии от объектов, которые должны быть защищены от шума. Например, авиационные мотороиспытательные станции с уровнем шума 130 дБ должны быть размещены вне городской черты с соблюдением соответствующей санитарно-защитной зоны. Шумные цеха должны быть окружены древесными насаждениями, поглощающими шум.
   2. Небольшие помещения объемом до 40 м3, в которых расположено шумящее оборудование, рекомендуется облицовывать звукопоглощающими материалами (акустической штукатуркой, плиткой и т. д.).
   Индивидуальные меры защиты: антифоны или противошумы:
   1) внутренние – заглушки и вкладыши;
   2) наружные – наушники и шлемы.
   Наиболее простая конструкция – заглушка из стерильной ваты. Более эффективна заглушка из специальной ультратонкой стекловаты УТВ. Заглушки могут быть из мягкого кожуха, резины и пластмассы. Заглушающая способность их не превышает 7—12 дБ. Заглушающая способность противошумных наушников ВЦНИЧОТ-2 составляет в зависимости от частоты шумов: до 500 Гц – 14 дБ, до 1000 Гц – 22 дБ, в области от 2000 до 4000 Гц – 47 дБ.
   В производствах, где наблюдается интенсивный шум, должны проводиться предварительные и периодические медицинские осмотры рабочих с обязательной проверкой слуха аудиометрами или камертонами.
   Периодические медицинские осмотры с целью выявления повышенной чувствительности уха к шуму должны проводиться через 3, 6, 12 месяцев в течение первых трех лет, а затем каждые 3 года с целью выявления тугоухости. Лица, у которых между двумя периодическими осмотрами обнаружено существенное ухудшение слуха, а именно повышение порогов более чем на 20 дБ, или резкое ухудшение общего состояния, должны быть переведены на нешумную работу.

Вибрация и ее значение в гигиене труда

   Широко используется в различных технологических процессах – виброуплотнении, прессовании, формовке, бурении, обработке металлов, при работе многих машин и механизмов. Вибрация представляет собой механическое колебательное движение, при котором материальное тело периодически через определенный промежуток времени проходит одно и то же устойчивое положение. Каким бы сложным ни было колебательное движение, его простой составляющей является гармоническое или периодическое колебание, которое представляет собой правильную синусоиду. Такие колебания характерны для машин и инструментов вращательного действия.
   Такое колебание характеризуется:
   1) амплитудой – это максимальное перемещение колеблющейся точки от ее стабильного положения;
   2) частотой – это количество полных циклов колебаний в единицу времени (Гц).
   Время, за которое совершается один полный цикл колебания, называется периодом. Амплитуда выражается в сантиметрах или в его долях (миллиметрах или микронах).
   Человек в состоянии ощущать вибрацию в диапазоне от долей герца до 8000 Гц. Вибрация более высокой частоты воспринимается как тепловое ощущение. Вибрация с частотой колебания более 16 Гц воспринимается и как низкочастотный шум.
   Колебания могут быть затухающими. При этом амплитуда колебания постоянно уменьшается в связи с наличием сопротивления. Амплитудно-переменная вибрация характерна для плохо отрегулированных моторов, хаотическая вибрация (хаотическая амплитуда) – для плохо закрепленных деталей. Вибрация с амплитудой менее 0,5 мм гасится тканями, более 33 мм – действует на системы и органы.
   Действие вибрации зависит от силы, с которой рабочий удерживает инструмент (статическое напряжение усиливает действие вибрации). Низкая температура также усиливает действие вибрации, вызывая дополнительный спазм сосудов.
   По способу передачи на человека вибрация подразделяется на:
   1) общую (вибрация рабочих мест) – передается через опорные поверхности на тело человека;
   2) локальную – через руки при работе с разными инструментами (машинами).
   Общая вибрация по источнику возникновения подразделяется на:
   1) транспортную (категория 1), возникающую при движении машин по местности;
   2) транспортно-технологическую (категория 2), воздействующую на человека на рабочих местах машин с ограниченной подвижностью и перемещающихся только по специально подготовленным поверхностям производственных помещений, промышленных площадок и горных выработок (экскаваторы, краны промышленные и строительные, завалочные машины для загрузки мартеновских печей, горные комбайны, путевые машины, бетоноукладчики и т. д.);
   3) технологическую (категория 3), воздействующую на человека на рабочих местах стационарных машин или передающуюся на рабочие места, не имеющие источников вибрации (станки металло– и деревообрабатывающие, кузнечно-прессовое оборудование; литейные и электрические машины, стационарные электрические установки; насосные агрегаты и вентиляторы; оборудование промышленности стройматериалов, установки химической и нефтехимической промышленности и др.).
   Технологическая вибрация подразделяется на:
   1) тип А – на постоянных рабочих местах производственных помещений;
   2) тип Б – на рабочих местах складов, столовых и других помещений, где нет машин, генерирующих вибрацию;
   3) тип В – на рабочих местах в помещениях заводоуправлений, конструкторских бюро, лабораториях, учебных классов, в помещениях для работников умственного труда.
   Регламентация вибрации осуществляется на основании СН 2.2.4/2.1/8.566-96, «Производственная вибрация, вибрация в помещения жилых и общественных зданий».
   Локальная вибрация классифицируется по такому же принципу, что и общая, но источники ее другие:
   1) ручные машины с двигателями (или ручной механизированный инструмент), органы ручного управления машинами и оборудованием;
   2) ручные инструменты без двигателей и обрабатываемые детали.
   По направлению действия вдоль осей
   Локальная:
   z – ось, близкая к направлению приложения силы или ось предплечья;
   x – ось, параллельная оси охватываемых рукояток;
   y – перпендикулярно осям z и x.
   Общая:
   z – вертикальная ось;
   x – горизонтальная ось (спина и грудь);
   y – горизонтальная ось (плечо и плечо).
   По частотному составу.

   Таблица 2. Частотный состав вибрации.

   По временным характеристикам
   1. Постоянные (величина виброскорости изменяется до 6 дБ за время более 1 мин).
   2. Непостоянные (величина виброскорости изменяется более 6 дБ за время больше или равное 1 мин):
   1) колеблющаяся вибрация – уровень виброскорости непрерывно изменяется во времени;
   2) прерывистая – контакт оператора с вибрацией прерывается во время работы (длительность интервалов, когда имеет место контакт с вибрацией более 1 с);
   3) импульсная – состоит из одного или нескольких воздействий, каждое длительностью менее 1 с.

Влияние вибрации на организм

   Вибрация, передающаяся на организм человека, вне зависимости от места контакта распространяется по всему телу.
   Наиболее высокой вибрационной чувствительностью обладает кожа ладонной поверхности концевых фаланг пальцев рук. Наибольшая чувствительность наблюдается к вибрации с частотами 100—250 Гц, причем в дневное время чувствительность выражена в большей степени, чем утром и вечером.
   Вибрационный фактор служит источником многих заболеваний, объединенных в отечественной литературе под общим названием «вибрационная болезнь». Разные формы этого заболевания существенно отличаются между собой как по клинической картине, развитию и течению, так и по механизму своего возникновения и патогенезу.
   Различают 3 основные формы вибрационной болезни:
   1) периферическая, или местная, вибрация, обусловленная преимущественным воздействием локальной вибрации на руки рабочих;
   2) церебральная форма, или общая вибрация, вызванная преимущественным воздействием общей вибрации;
   3) церебрально-периферическая, или промежуточная, форма, которая порождается комбинированным действием общей и локальной вибрации.
   Церебральная форма возникает у рабочих при виброуплотнении бетона, водителей машин, железнодорожников. Вибрационная болезнь рабочих-бетонщиков отличается тяжестью и напряженностью. При ней на первый план выступают изменения со стороны нервной системы, протекающие по типу тяжелого вазоневроза. Ее принимают за церебральную форму с одновременным наличием и местных поражений, с аналогичными симптомами и синдромами, которые наблюдаются и при вибрационной болезни, вызванной действием локальной вибрации. Могут отмечаться «вегетативные кризы» – дурнотное состояние, чувство онемения, боли в животе, сердце, конечностях. Больные страдают бессонницей, субфибрилитетом, импотенцией, потерей аппетита, резким похуданием, чрезмерной раздражительностью. Вибрация, передающаяся от средств передвижения, может приводить к заболеваниям внутренних органов, опорно-двигательного аппарата, к функциональным сдвигам в вестибулярном аппарате, развитию соляралгий, нарушению секреторной и моторной функции желудка, обострению воспалительных процессов органов малого таза, импотенции. Могут иметь место значительные изменения поясничной части позвоночника, радикулиты.
   При вибрационной болезни могут быть нарушены обменные процессы, страдают углеводный, белковый, фосфорный обмены, изменяется функциональное состояние щитовидной железы.
   При местном воздействии вибрации появляются мраморность кожных покровов, боли в конечностях сначала в ночное время, затем постоянная потеря всех видов чувствительности.
   У проходчиков и бурильщиков со стороны мышечной системы часто наблюдаются спастическое состояние некоторых групп мышц, судороги, перерождение мышечной ткани, гиперкальцинация мышечной ткани, и в результате происходит ее склерозирование.
   В некоторых случаях вследствие поражения периферических двигательных волокон развивается атрофия мелких мышц кистей и плечевого пояса, уменьшается мышечная сила.
   При работе с виброинструментами часто возникают изменения костно-суставного аппарата, уменьшается эластичность суставных хрящей. Часто развиваются асептические хондроостеонекрозы, которые поражают мелкие кости запястья и эпифизы длинных трубчатых костей.
   Различают 4 стадии вибрационной болезни.
   1-я стадия характеризуется субъективными явлениями (ночными непродолжительными болями в конечностях, парестезией, гипотермией, умеренным акроцианозом).
   2-я стадия: усиление болей, стойкие нарушения кожной чувствительности на всех пальцах и предплечье, резкий спазм сосудов, гипергидроз.
   3-я стадия: потеря всех видов чувствительности, симптом «мертвого пальца», снижение мышечной силы, развитие костно-суставных поражений, функциональные расстройства ЦНС астенического и астеноневротического характера.
   4-я стадия: изменения в крупных коронарных и мозговых сосудах, прогрессирующая мышечная атрофия рук и ног.
   1-я и 2-я стадия полностью излечимы. При 3-й стадии после лечения необходимо отстранение от работы, связанной с вибрацией и охлаждением.
   Тяжелые формы болезни резко ограничивают трудоспособность, всегда являются показанием к переводу работающих на инвалидность III, а иногда и II группы.
   Профилактика неблагоприятного воздействия вибрации
   Среди мер, направленных на устранение неблагоприятного воздействия вибрации, различают:
   1) меры гигиенического характера;
   2) меры технического характера.
   При помощи технических мер можно устранить или значительно уменьшить возникновения вибрации. Это рациональное конструирование ручных инструментов. Примером могут служить вибробезопасные пневматические инструменты ударного действия, различные средства амортизации и виброизоляции, применение для защиты рук при клепальных работах виброгасящих поддержек.
   Если нет возможности полностью устранить вибрацию, необходимо ограничить ее распространение. Это достигается путем установки машин и станков на фундаменты из войлока или пробки. Воздушная прослойка вокруг фундамента также предотвращает передачу вибрации.
   Гигиенические профилактические мероприятия
   1. Нормирование вибрации

   Таблица 3.

   Таблица 4. Профилактика вибрационной болезни.

   2. Ограничение длительности воздействия вибрации.
   Работа с виброинструментом не более 2/3 длительности рабочего дня, 10—15 мин, перерыв через каждый час работы.
   3. Устранение условий, способствующих возникновению вибрационной болезни: температура воздуха в помещении не менее 16 °С при влажности 40—60 % и скорости движения воздуха 0,3 м/с. Необходимо на рабочих местах предусматривать местный обогрев рабочих. Рекомендуется использовать перчатки с виброгасящей прокладкой.
   4. Повышение сопротивляемости организма: применение водных процедур (теплые ванны конечностей при температуре 35—36 °С, ежедневная производственная гимнастика, самомассаж). Вследствие усиленного разрушения в организме при воздействии шума и вибрации водорастворимых витаминов в питание следует включать продукты, являющиеся источником нутриентов. При выборе методов технологической обработки пищевых продуктов следует предпочесть те из них, которые не вызывают появления веществ, раздражающих центральную нервную систему. Так, желательно применять тушение вместо поджаривания, исключить копчености и т. д.
   Все рабочие, подвергающиеся воздействию вибрации, подлежат периодическому медицинскому осмотру 1 раз в год.

ЛЕКЦИЯ № 13. Состояние здоровья детей и подростков

Оценка состояния здоровья детей и подростков. Группы здоровья

   Состояние здоровья подрастающего поколения – важный показатель благополучия общества и государства, отражающий не только настоящую ситуацию, но и прогноз на будущее.
   Стабильно неблагоприятная тенденция ухудшения состояния здоровья детей приобрела на сегодняшний день настолько устойчивый характер, что создается реальная угроза национальной безопасности страны.
   Отмечаются снижение рождаемости, рост младенческой смертности, существенное уменьшение доли здоровых детей при рождении, рост числа инвалидов с детства, больных с хронической патологией.
   Анализ современной ситуации свидетельствует, что причинами такого катастрофического положения являются социально-экономическая нестабильность в обществе, неблагополучное санитарное состояние среды обитания детей (условия и режим обучения, бытовые условия и т. д.), экологическая ситуация, реформирование системы образования и здравоохранения, низкая медицинская активность и санитарная грамотность населения, свертывания профилактической работы и пр.
   Несомненно, наметившаяся и сохраняющаяся тенденция к ухудшению показателей здоровья детей, повлечет за собой ухудшение состояния здоровья подрастающего поколения во всех возрастных группах, и неизменно скажется в дальнейшем на качестве трудовых ресурсов, воспроизводстве будущих поколений.
   Под понятием здоровья детей и подростков следует понимать состояние полного социально-биологического и психического благополучия, гармоничное, соответствующее возрасту физическое развитие, нормальный уровень функционирования всех органов и систем организма и отсутствие заболеваний.
   Однако в понятие «здоровье» вкладываются не только абсолютные и качественные, но и количественные признаки, так как существует еще и оценка степени здоровья, т. е. адаптационных возможностей организма. По определению В. Ю. Вельтищева, «Здоровье – это состояние жизнедеятельности, соответствующее биологическому возрасту ребенка, гармоничного единства физических и интеллектуальных характеристик, формирования адаптационных и компенсаторных реакций в процессе роста».
   В связи с этим определение показателей и критериев состояния здоровья детского населения приобретает особую актуальность.
   Первоначально оценка состояния здоровья детей при профилактических осмотрах осуществлялась исключительно по принципу «здоровый» или «больной», т. е. имеющий хроническое заболевание. Однако грубое разделение детских популяций на «здоровых» и «больных» не позволяло обращать внимание на своевременную коррекцию преморбидных отклонений и, следовательно, не обеспечивало в должной мере профилактического направления осмотров.
   Для преодоления этих недостатков профессором С. М. Громбахом с соавторами (1982 г.) была разработана «Методика комплексной оценки состояния здоровья детей и подростков при массовых врачебных осмотрах», действующая до 2004 г.
   В основу создания методики была положена четкая качественная и количественная комплексная характеристика состояния здоровья.
   Для обеспечения комплексного подхода к оценке состояния здоровья были предложены 4 базовых критерия:
   1) наличие или отсутствие в момент обследования хронических заболеваний;
   2) уровень достигнутого развития (физического и психического), степень его гармоничности;
   3) уровень функционального состояния основных систем организма;
   4) степень резистентности организма неблагоприятным внешним воздействиям.
   В настоящее время на основании полученных в последние годы данных о состоянии здоровья детей, его особенностях, сведений о течении заболеваний, а также расширившихся диагностических возможностей определили необходимость внесения определенных изменений и дополнений в существующую методику. В соответствии с Приказом МЗ РФ от 30.12.2003 г. № 621 всесторонняя комплексная оценка состояния здоровья, базирующаяся на предложенных М. С. Громбахом 4 критериях и позволяющая отнести каждого ребенка к определенной группе здоровья, обращает внимание уже не только на отсутствие или наличие заболеваний, но и позволяет определить их донозологические и преморбидные формы.
   В соответствии с изложенными критериями здоровья и методическими подходами к их выявлению дети в зависимости от состояния здоровья могут быть отнесены к следующим группам здоровья.
   I группа – здоровые дети, имеющие нормальное, соответствующее возрасту физическое и нервно-психическое развитие, без функциональных и морфофункциональных отклонений.
   В настоящее время по данным НИИ гигиены детей и подростков наполняемость I группы здоровья в среднем по России не превышает 10 %, а в некоторых регионах страны достигает лишь 3—6 %, что, несомненно, является отражением санитарно-эпидемиологического неблагополучия населения.
   II группа – дети, не страдающие хроническими заболеваниями, но имеющие функциональные или морфофункциональные отклонения, реконвалесценты, особенно перенесшие тяжелые и средней тяжести инфекционные заболевания, с общей задержкой физического развития без эндокринной патологии, а также дети с низким уровнем иммунорезистентности организма – часто (4 раза и более в год) и (или) длительно (более 25 календарных дней по одному заболеванию) болеющие.
   Данные НИИ гигиены детей и подростков свидетельствуют, что за последние 10 лет во всех возрастных группах произошел стремительный рост числа функциональных нарушений (в 1,5 раза), и наполняемость второй группы здоровья возросла в среднем с 20 до 35 %.
   Наличие функциональных отклонений, так часто определяющих отнесение ребенка ко II группе здоровья, имеют некоторые закономерности возникновения в состоянии здоровья детей в зависимости от их возраста.
   Для детей грудного возраста характерно чаще всего возникновение функциональных отклонений в крови и аллергических проявлений без органического выраженного характера.
   Для раннего возраста (до 3 лет) – в пищеварительной системе.
   В дошкольном возрасте отклонения возникают в наибольшем числе систем организма – нервной, дыхательной, мочевыделительной, а также опорно-двигательном аппарате и ЛОР-органах.
   В школьном возрасте максимальное количество отклонений возникает в сердечно-сосудистой системе и органе зрения (особенно в периоды снижения адаптации к учебной деятельности.
   III группа – дети, страдающие хроническими заболеваниями в стадии ремиссии (компенсации).
   В среднем по России отмечается стойкая тенденция к росту числа хронических заболеваний среди детей и подростков. Наполняемость III группы здоровья возрастает у детей в дошкольном возрасте и становится сильно выраженной в школьном периоде (половина школьников 7—9 лет и более 60 % старшеклассников имеют хронические заболевания), доходя до 65—70 %. Увеличивается число школьников, имеющих несколько диагнозов. Школьники 7—8 лет имеют в среднем 2 диагноза, 10—11 лет – 3 диагноза, 16—17 лет – 3—4 диагноза, а 20 % старшеклассников-подростков имеют в анамнезе 5 и более функциональных нарушений и хронических заболеваний.
   IV группа – дети, страдающие хроническими заболеваниями в стадии субкомпенсации.
   V группа – дети, страдающие хроническими заболеваниями в стадии декомпенсации, дети-инвалиды.
   При наличии нескольких функциональных отклонений и заболеваний у одного ребенка окончательная оценка состояния здоровья проводится по наиболее тяжелому из них. При наличии нескольких заболеваний каждое из которых служит основанием для отнесения больного к III группе и снижении при этом функциональных возможностей организма, больного относят к IV группе здоровья.
   Особое профилактическое значение имеет выделение II группы здоровья, поскольку функциональные возможности детей и подростков, отнесенных к этой группе, снижены, и при отсутствии медицинского контроля, адекватных коррекционных и лечебно-оздоровительных мероприятий у них существует высокий риск формирования хронической патологии.
   Основным методом, позволяющим получать характеристики, на основании которых дается комплексная оценка состояния здоровья, является профилактический медицинский осмотр. Для детей в возрасте 3 лет и старше предусмотрены следующие сроки проведения осмотров: 3 года (перед поступлением в дошкольное общеобразовательное учреждение), 5 лет 6 месяцев, или 6 лет (за год до поступления в школу), 8 лет (по окончании 1-го класса школы), 10 лет (при переходе на предметное обучение), 12 лет, 14—15 лет. Распределение детей по группам здоровья широко используется в педиатрии и для одномоментной оценки состояния здоровья в коллективе. Распределение детей по группам здоровья очень важно для:
   1) характеристики здоровья детской популяции, получения статистических срезов показателей здоровья и численности соответствующих групп здоровья;
   2) сравнительного сопоставления групп детей в различных коллективах, образовательных учреждениях, разных территориях, во времени;
   3) оценки эффективности профилактической и лечебной работ детских медицинских учреждений на основании перехода детей из одной группы здоровья в другую;
   4) выявления и сравнения эффекта факторов риска, влияющих на здоровье детей и подростков;
   5) определения потребности в специализированных службах и кадрах.

Критерии определения, методы и принципы изучения здоровья детского населения

   Здоровье детской популяции складывается из здоровья индивидуумов, но при этом рассматривается и в качестве характеристики общественного здоровья. Общественное здоровье – это не только медицинское понятие, а в значительной степени – общественная, социальная и экономическая категория, поскольку внешняя социальная и природная среда опосредуется через конкретные условия жизни населения.
   В последние годы интенсивно развивается направление, связанное с использованием многоуровневой системы оценки состояния здоровья детского населения. Основными группами статистических показателей, используемых для характеристики общественного здоровья контингента детей и подростков, являются следующие:
   1) медико-демографические;
   2) физическое развитие;
   3) распределение детей по группам здоровья;
   4) заболеваемость;
   5) данные об инвалидности.
   К медико-демографическим критериям, характеризующим состояние детской популяции, относятся следующие:
   1) рождаемость – показатель, характеризующий процесс возобновления новых поколений, в основе которого лежат биологические факторы, влияющие на способность организма к воспроизведению потомства;
   2) смертность – показатель, характеризующий интенсивность процесса гибели лиц определенного возраста и пола в популяции;
   3) естественный прирост населения – обобщающая характеристика роста населения; может выражаться абсолютным числом как разность между числом родившихся и числом умерших за год, или рассчитывается как разность показателей рождаемости и смертности;
   4) средняя продолжительность предстоящей жизни – показатель, определяющий, сколько лет в среднем предстоит прожить данному поколению родившихся, если на всем протяжении жизни этого поколения показатели смертности будут оставаться такими, какими они сложились на данный момент. Показатель средней продолжительности жизни рассчитывается на основании повозрастных показателей смертности путем построения таблиц смертности;
   5) младенческая смертность – показатель, характеризующий смертность живорожденных детей от рождения до исполнения 1 года.
   Следующим показателем, характеризующим состояние детской популяции, является физическое развитие.
   Физическое развитие является одним из объективных и информативных показателей состояния здоровья детского населения, который в настоящее время изменяется столь же резко, как и другие показатели (заболеваемость, смертность и др.).
   Под физическим развитием понимается комплекс морфологических и функциональных свойств и качеств растущего организма, а также уровень его биологического созревания (биологический возраст). Анализ физического развития дает возможность судить о темпах биологического созревания и гармоничности морфофункционального статуса, как отдельного индивидуума, так и детской популяции в целом.
   Физическое развитие является интегральным показателем (индексом) санитарно-гигиенического благополучия детского населения, поскольку во многом зависит от многообразия внешних и внутренних факторов. Различают 3 группы основных факторов, определяющих направленность и степень физического развития:
   1) эндогенные факторы (наследственность, внутриутробные воздействия, недоношенность, врожденные пороки и пр.);
   2) природно-климатические факторы среды обитания (климат, рельеф местности, а также атмосферные загрязнения и пр.);
   3) социально-экономические и социально-гигиенические факторы (степень экономического развития, условия жизни, быта, питания, воспитания и обучения детей, культурно-образовательный уровень, гигиенические навыки и пр.).
   Все вышеперечисленные факторы действуют в единстве и взаимообусловленности, однако, поскольку физическое развитие является показателем роста и формирования организма, оно подчиняется не только биологическим законам, но и в большей степени зависит от сложного комплекса социальных условий, имеющих решающее значение. Социальная среда, в которой находится ребенок, во многом формирует и изменяет его здоровье, в том числе определяет уровень и динамику физического развития.
   Систематическое наблюдение за ростом и развитием детей и подростков в России являются составной частью государственной системы медицинского контроля состояния здоровья подрастающего поколения.
   Алгоритм такого наблюдения включает в себя антропометрию, соматоскопию, физиометрию и стандартизованную оценку полученных данных.
   Распределение детей по группам здоровья используется в качестве четкой характеристики здоровья детской популяции, как показатель санитарного благополучия. По данным ВОЗ, если свыше 80 % детей в рассматриваемой популяции относятся ко II—III группам здоровья, это указывает на неблагополучие населения.
   Определение критериев, характеризующих и обусловливающих распределение детей и подростков по группам здоровья, осуществляется с учетом так называемых определяющих признаков здоровья, которые рассматривались ранее.
   Заболеваемость является одним из важнейших критериев, характеризующих здоровье детского населения. В широком понимании под заболеваемостью подразумеваются данные о распространенности, структуре и динамике различных болезней, зарегистрированных среди населения в целом или его отдельных группах (территориальных, возрастных, половых и др.).
   При изучении заболеваемости необходимо пользоваться единой методологической основой, включающей правильное применение терминов и одинаковое их понимание, унифицированную систему учета, сбора и анализа информации. Источником получения информации о заболеваемости являются данные по обращаемости за медицинской помощью, данные медицинских осмотров, данные о причинах смерти.
   Для изучения и характеристики заболеваемости детей выделяют 3 понятия: собственно заболеваемость, распространенность заболеваний и патологическую пораженность.
   Заболеваемость (первичная заболеваемость) – число заболеваний, нигде не зарегистрированных ранее и впервые выявленных в данном календарном году.
   Распространенность (болезненность) – общее число всех имеющихся заболеваний, как впервые выявленных в данном году, так и в предыдущие годы, по поводу которых больной вновь обратился за медицинской помощью в данном календарном году.
   Между этими двумя понятиями есть существенные различия, знать которые необходимо для правильного анализа результатов. Собственно заболеваемость – показатель, более чутко реагирующий на изменения условий среды в изучаемый календарный год. При анализе этого показателя за ряд лет можно получить более правильное представление о частоте возникновения и динамике заболеваемости, а также об эффективности комплекса гигиенических и лечебных мероприятий, направленных на ее снижение. Показатель же болезненности более устойчив по отношению к различным влияниям среды, и его возрастание не означает отрицательных сдвигов в состоянии здоровья детского населения. Это возрастание может быть обусловлено улучшением лечения больных детей и продления их жизни, что приводит к «накоплению» контингентов детей, состоящих на диспансерном учете.
   Заболеваемость по обращаемости позволяет установить также кратность обращений, выявить детей, болеющих длительно и многократно, и не болевших в календарном году ни разу.
   Количество часто болеющих детей в течение года определяется в процентах к числу обследованных. Часто болеющими принято считать детей, которые в течение года болели 4 раза и более.
   Количество длительно болеющих детей в течение года определяется в процентах к числу обследованных. Длительно болеющими принято считать детей, которые по одному заболеванию болеют более 25 календарных дней.
   Количество детей, не болевших за год ни разу, в процентах, к общему числу обследованных определяется как «индекс здоровья».
   Патологическая пораженность – совокупность выявленных при медицинских осмотрах заболеваний, а также морфологических или функциональных отклонений, преморбидных форм и состояний, которые в дальнейшем могут обусловить болезнь, но к моменту обследования еще не вынуждают их носителя обращаться за медицинской помощью.
   Рост распространенности тяжелых форм патологии во многом обусловливает рост частоты детской инвалидности.
   5. Инвалидность у детей (по ВОЗ) – это значительное ограничение жизнедеятельности, приводящее к социальной дезадаптации вследствие нарушения развития и роста ребенка, способностей к самообслуживанию, передвижению, ориентации, контролю за своим поведением, обучению, общению, трудовой деятельности в будущем.
   За последние 5 лет число детей-инвалидов всех возрастов увеличилось на 170 тыс. человек, распространенность детской инвалидности составляет 200 на 10 000 детского населения. При этом более 65 % инвалидов – это дети подросткового возраста (10—17 лет включительно). В структуре причин детской инвалидности ведущее место занимают инфекционные и соматические заболевания (25,7 %).

Факторы, влияющие на состояние здоровья детей и подростков

   В процессе онтогенеза детский и подростковый период, от 0 до 17 лет, является чрезвычайно напряженным периодом морфофункциональных перестроек, что должно учитываться при оценке формирования здоровья. Одновременно этот возрастной период характеризуется влиянием целого комплекса социальных условий и частой их сменой (ясли, сад, школа, профессиональное обучение, трудовая деятельность).
   Детское население подвергается воздействию многообразных факторов окружающей среды, многие из которых рассматриваются в качестве факторов риска развития неблагоприятных изменений в организме. Определяющую роль в возникновении отклонений в состоянии здоровья детей и подростков играют 3 группы факторов:
   1) факторы, характеризующие генотип популяции («генетический груз»);
   2) образ жизни;
   3) состояние окружающей среды.
   Социальные и средовые факторы действуют не изолированно, а в сложном взаимодействии с биологическими, в том числе наследственными, факторами. Это обусловливает зависимость заболеваемости детей и подростков как от среды, в которой они находятся, так и от генотипа и биологических закономерностей роста и развития.
   По данным ВОЗ в формировании состояния здоровья вклад социальных факторов и образа жизни составляет около 40 %, факторов загрязнения окружающей среды – 30 % (в том числе собственно природно-климатических условий – 10 %), биологических факторов —20 %, медицинского обслуживания – 10 %. Однако эти величины являются усредненными, не учитывают возрастных особенностей роста и развития детей, формирования патологии в отдельные периоды их жизни, распространенности факторов риска. Роль тех или иных социально-генетических и медико-биологических факторов в развитии неблагоприятных изменений в состоянии здоровья различна в зависимости от пола и возраста индивидуума.
   На состояние здоровья детей оказывают влияние отдельные факторы:
   1) медико-биологические факторы риска периода беременности и родов матери: возраст родителей на момент рождения ребенка, хронические заболевания у родителей, острые заболевания у матери во время беременности, прием в течение беременности различных препаратов, психотравмы во время беременности, осложнения беременности (особенно гестозы второй половины беременности) и родов и пр.;
   2) факторы риска раннего детства: масса тела при рождении, характер вскармливания, отклонения в состоянии здоровья на первом году жизни и пр.;
   3) факторы риска, характеризующие условия и образ жизни ребенка: жилищные условия, доход и уровень образования родителей (в первую очередь матерей), курение родителей, состав семьи, психологический климат в семье, отношение родителей к реализации профилактических и лечебных мероприятий и пр.
   При оценке вклада отдельных факторов, составляющих социально-гигиеническую группу, необходимо помнить, что их роль различна в разных возрастных группах.
   В возрасте до 1 года среди социальных факторов решающее значение имеют характер семьи и образование родителей. В возрасте 1—4 лет значение этих факторов уменьшается, но все еще остается достаточно значимым. Однако уже в этом возрасте увеличивается роль жилищных условий и дохода семьи, содержания животных и курения родственников в доме. Важен такой фактор, как посещение ребенком детского дошкольного учреждения.
   Наибольшее значение он имеет именно в возрастной группе 1—4 года. В школьном возрасте наибольшее значение имеют факторы внутрижилищной, в том числе, внутришкольной среды, которые составляют 12,5 % в начальных классах, а к окончанию школы – 20,7 %, т. е. возрастают почти в 2 раза. В то же время вклад социально-гигиенических факторов за этот же период роста и развития ребенка снижается с 27,5 % при поступлении в школу до 13,9 % в конце обучения.
   Среди биологических факторов во всех возрастных группах детей основными факторами, оказывающими наибольшее влияние на заболеваемость, являются заболевания матери во время беременности и осложнения течения беременности. Поскольку наличие осложнений в родах (преждевременные, запоздалые, стремительные роды, родовая слабость) может привести к нарушению состояния здоровья в дальнейшем, это позволяет также расценивать их как факторы риска.
   Из факторов раннего детства особую значимость имеют естественное вскармливание и гигиенически правильный уход за ребенком.
   Для каждого возраста характерно преобладание тех или иных факторов риска, что определяет необходимость дифференцированного подхода к оценке роли и вклада факторов, планированию и осуществлению профилактических и оздоровительных мероприятий.
   Объективно исследовать факторы, влияющие на здоровье детей и подростков, наиболее целесообразно с помощью специальных формализованных карт, анкет и т. д.

ЛЕКЦИЯ № 14. Физическое развитие детей и подростков, методы их оценки

Показатели физического развития

   Для полного представления о состоянии здоровья подрастающего поколения, кроме заболеваемости, демографических данных, необходимо еще изучение ведущего критерия здоровья детского организма – физического развития.
   Термин «физическое развитие», с одной стороны, обозначает процесс формирования и созревания детского организма, с другой – степень этого созревания на каждом данном отрезке времени, т. е. имеет, как минимум, два значения. Исходя из этого под физическим развитием понимают совокупность морфологических, функциональных свойств и качеств, а также уровень биологического развития (биологический возраст) организма, характеризующий процесс созревания ребенка на определенном этапе жизни.
   Физическое развитие растущего организма является одним из основных показателей здоровья ребенка. Чем более значительны нарушения в физическом развитии, тем больше вероятность возникновения заболеваний.
   Вместе с тем, подчиняясь закономерностям, физическое развитие зависит от ряда факторов социально-экономического, медико-биологического и экологического характера. Это позволяет рассматривать физическое развитие со времени изучения Ф. Ф. Эрисманом физического развития детей и рабочих подростков-текстильщиков Глуховской мануфактуры Московской губернии в 1878—1886 гг. как объективный показатель санитарно-эпидемиологического благополучия населения.
   Исследование физического развития проводится одновременно с изучением состояния здоровья во время углубленных медицинских осмотров, проводимых в детских и подростковых учреждениях. Изучение физического развития ребенка начинается с установления его календарного (хронологического) возраста. У каждого обследуемого ребенка должен определяться точный возраст на момент обследования, выраженный в годах, месяцах и днях. Это необходимо в связи с тем, что скорость изменения показателей физического развития неодинакова в разные периоды жизни ребенка, поэтому с учетом меняющихся темпов развития возрастная группировка проводится с различными интервалами («временным шагом»).
   Для детей первого года жизни – каждый 1 месяц.
   Для детей от 1 до 3 лет – каждые 3 месяца.
   Для детей от 3 до 7 лет – каждые 6 месяцев.
   Для детей старше 7 лет – каждый год.
   Именно поэтому при возрастной группировке было бы неправильным считать число полных прожитых лет, так как при этом к 8-летним детям, например, пришлось бы относить и тех, кому только исполнилось 8 лет, и тех, кому 8 лет и 6 месяцев от рождения, и даже тех, кому 8 лет 11 месяцев 20 дней. Поэтому применяют другой прием, по которому к 8-летним детям относят детей в возрасте от 7 лет и 6 месяцев до 8 лет и 5 месяцев 29 дней, к детям 9 лет – от 8 лет 6 месяцев до 9 лет 5 месяцев 29 дней и т. д.
   Далее в программу унифицированных антропометрических исследований входит определение из всего многообразия морфологических и функциональных признаков ряда основных. К ним относятся соматометрические, соматоскопические и физиометрические признаки.
   Соматометрия включает определение длины, массы тела, окружности грудной клетки.
   Длина тела является суммарным показателем, характеризующим состояние пластических (ростовых) процессов в организме; этот наиболее стабильный показатель из всех показателей физического развития. Масса тела свидетельствует о развитии костно-мышечного аппарата, подкожно-жировой клетчатки, внутренних органов; в отличие от длины масса тела относительно лабильна и может изменяться под влиянием даже кратковременного заболевания, изменения режима дня, нарушения питания. Окружность грудной клетки характеризует ее вместимость и развитие грудных и спинных мышц, а также функциональное состояние органов грудной полости.
   Соматоскопия проводится для получения общего впечатления о физическом развитии обследуемого: типе строения тела в целом и отдельных его частей, их взаимоотношении, пропорциональности, наличии функциональных или патологических отклонений. Соматоскопическое обследование носит весьма субъективный характер, однако использование единых методических подходов (а в некоторых случаях, и дополнительных инструментальных измерений) позволяет получить максимально объективные данные.
   Соматоскопия включает:
   1) оценку состояния опорно-двигательного аппарата: определение формы черепа, грудной клетки, ног, стоп, позвоночника, вида осанки, развития мускулатуры;
   2) определение степени жироотложения;
   3) оценку степени полового созревания;
   4) оценку состояния кожных покровов;
   5) оценки состояния слизистых оболочек глаз и полости рта;
   6) осмотр зубов и составление зубной формулы.
   Физиометрия включает определение функциональных показателей. При изучении физического развития измеряют жизненную емкость легких (является показателем вместимости легких и силы дыхательных мышц) – спирометрия, мышечную силу рук (характеризует степень развития мускулатуры) и становую силу – динамометрия.
   В зависимости от возраста детей программа антропометрических исследований может и должна меняться. Характеристика физического развития детей раннего и дошкольного возрастов должна дополняться данными о развитии моторики речи, но исключать некоторые функциональные исследования (определение жизненной емкости легких, мышечной и становой сил). При изучении физического развития подростков целесообразно включать в программу обследования ряд функциональных проб для определения состояния основных систем организма.
   В дальнейшем полученные данные антропометрических измерений обрабатываются методом вариационной статистики, в результате чего получают средние величины роста, веса, окружности грудной клетки – стандарты физического развития, используемые при индивидуальной и групповой оценке физического развития детей.
   Для изучения, анализа и оценки физического развития больших групп детей или отдельных индивидуумов применяют 2 основных метода наблюдения (сбора антропометрического материала).
   1. Генерализующий метод (метод поперечного сечения популяции) – основан на одномоментном обследовании физического развития больших групп детей различных возрастов. Каждая возрастная группа должна состоять не менее чем из 100 человек. Метод используется на большом числе наблюдений с целью получения возрастно-половых стандартов и оценочных таблиц, используемых как для индивидуальной оценки физического развития, так и для эколого-гигиенической оценки территории проживания детей. Метод позволяет вести наблюдения за динамическими сдвигами в физическом развитии детей данного региона в связи с состоянием здоровья, занятиями физической культурой, условиями жизни, питанием и т. д.
   Антропометрические данные, собранные генерализующим методом, используются в целях гигиенического нормирования при разработке стандартов мебели для дошкольных и общеобразовательных учреждений, оборудования мастерских, гимнастических залов, для гигиенического обоснования размеров детского инструментария, одежды, обуви и других предметов детского обихода.
   2. Индивидуализирующий метод (продольный срез) основан на обследовании конкретного ребенка, однократном или в динамике лет, с последующей оценкой его биологического уровня развития и гармоничности морфофункционального статуса с использованием соответствующих оценочных таблиц, давая возможность получить достаточную насыщенность каждой возрастно-половой группы по месяцам или годам жизни при сравнительно небольшом числе наблюдений. Данная методика позволяет определить особенности физического формирования организма из месяца в месяц (или из года в год) наблюдаемой группы детей в однородной совокупности.
   Индивидуализирующий метод не противоречит генерализующему методу и является существенным дополнением к нему как в изучении процесса общего развития ребенка, так и в уточнении влияния средовых факторов в ходе этого развития.
   Для получения средних показателей физического развития проводится обследование больших групп практически здоровых детей различных возрастно-половых групп. Полученные средние величины являются стандартами физического развития соответствующих групп детского населения. Чтобы полученные данные были приняты за стандарт, они должны отвечать определенным требованиям.
   1. Стандарты физического развития должны быть региональными.
   2. Статистическая совокупность должна быть репрезентативна, поэтому каждая возрастно-половая группа должна быть представлена не менее чем 100 детьми (единицами наблюдения).
   3. Статистическая совокупность должна быть однородна по полу, возрасту (с учетом гетероморфности, гетерохронности и полового диморфизма физического развития), этнической принадлежности (так как в физическом развитии народностей и наций имеются значимые различия), месту проживания (из-за возможного влияния биогеохимических провинций на физическое развитие) и состоянию здоровья.
   4. Из группы наблюдения должны быть исключены все случаи «неоднородности» по состоянию здоровья: дети, имеющие хронические заболевания, протекающие с интоксикацией (туберкулез, ревматизм и т. д.), серьезные нарушения в деятельности органов и систем организма (врожденные пороки сердца, последствия полиомиелита, костного туберкулеза, травм нервной системы и опорно-двигательного аппарата и т. д.), эндокринные заболевания. При разработке материалов обследования детей раннего возраста исключают детей с выраженным рахитом, гипотрофией, недоношенных, двойни.
   5. После формирования однородной и репрезентативной статистической совокупности должна применяться единая методика обследования, измерения, обработки и анализа данных.
   Общепринятых стандартов физического развития не существует. Различные условия жизни в разных климато-географических зонах, в городах и сельской местности, этнографические различия обуславливают разный уровень физического развития детского населения. Кроме того, учитывая изменения показателей физического развития в динамике лет (акселерация и децелерация физического развития), региональные стандарты должны уточняться каждые 5—10 лет.

Методы оценки физического развития детей и подростков

   При разработке и выборе методов оценки физического развития необходимо прежде всего учитывать основные закономерности физического развития растущего организма:
   1) гетероморфность и гетерохронность развития;
   2) наличие полового диморфизма и акселерации;
   3) зависимость физического развития от генетических и средовых факторов.
   Кроме того, при разработке шкал для оценки показателей физического развития необходимо учитывать и особенности статистического распределения этих показателей. Поэтому к методам оценки физического развития должны предъявляться следующие требования:
   1) учет гетерохронности и гетероморфности роста и развития индивидуума и полового диморфизма;
   2) взаимосвязанная оценка показателей физического развития;
   3) учет возможностей асимметрии распределения показателей;
   4) малая трудоемкость, отсутствие сложных расчетов.
   Существуют различные способы индивидуальной и групповой оценки физического развития детского населения.
   Рассмотрим методы индивидуальной оценки физического развития.
   Метод сигмальных отклонений
   Широко распространен метод сигмальных отклонений, когда показатели развития индивидуума сравниваются со средними их признаков для соответствующей возрастно-половой группы, разница между ними выражается в долях сигмы. Средние арифметические основных показателей физического развития и их сигмы представляют так называемые стандарты физического развития. Поскольку для каждой возрастно-половой группы разрабатываются свои стандарты, метод позволяет учесть гетероморфность физического развития и половой диморфизм.
   Однако существенным недостатком метода является изолированная оценка признаков вне их взаимосвязи. Кроме того, использование методов параметрической статистики для оценки антропометрических показателей, имеющих асимметрию в распределении (масса тела, окружность грудной клетки, мышечная сила рук) может привести к искажению результатов.
   Метод процентильных (центильных, перцентильных) шкал
   Для оценки физического развития индивидуума также используют метод непараметрической статистики – метод центильных шкал или каналов, когда по результатам математической обработки весь ряд делят на 100 частей. Обычно считают, что величины, находящиеся в центильном канале до 25 центиля оцениваются как ниже средних, от 25 до 75 центиля – как средние и свыше 75 центиля – как выше средних. Использование этого метода позволяет избежать искажений результатов оценки показателей, имеющих асимметрию в распределении. Однако, как и метод сигмальных отклонений, метод центильных шкал оценивает антропометрические признаки изолированно, вне их взаимосвязи.
   Метод шкал регрессии
   Для взаимосвязанной оценки показателей физического развития предложено использовать шкалы регрессии. При составлении шкал регрессии по длине тела определяют методом парной корреляции связь длины тела с массой тела и окружностью грудной клетки. Далее строят оценочные таблицы, в которых наблюдается последовательное увеличение значений одного из признаков, (например, веса) при соответствующем увеличении другого признака (например, роста) при прямой связи и аналогично последовательное уменьшение значений признаков – при обратной связи, т. е. при увеличении или уменьшении длины тела на 1 см масса тела и окружность грудной клетки изменяются на коэффициент регрессии (Ry/x). Для оценки отклонений фактических величин от должных используется частная сигма регрессии массы тела и окружности грудной клетки.
   Этот метод получил наибольшее распространение, так как дает возможность выделить лиц с гармоничным и дисгармоничным физическим развитием. Его преимущество заключается в том, что он позволяет дать комплексную оценку физического развития по совокупности признаков в их взаимосвязи, поскольку ни один из признаков, взятый каждый в отдельности, не может дать объективную и полную оценку физического развития.
   Однако использование метода параметрической статистики может привести к искажению результатов при оценке признаков, имеющих асимметрию в распределении. Кроме того, масса тела оценивается в зависимости лишь от длины тела и не учитывается влияние широтных размеров.
   Метод оценки физического развития детей по комплексной схеме
   Информативной и включающей в себя определение уровня биологического развития и степень гармоничности морфофункционального состояния является комплексная схема оценки физического развития, осуществляемая в два этапа.
   На первом этапе исследования устанавливают уровень биологического развития (биологический возраст), под которым понимают совокупность морфофункциональных особенностей организма, зависящих от индивидуального темпа роста и развития.
   Биологический возраст ребенка определяют по показателям длины тела стоя, прибавок длины тела за последний год, уровню оссификации скелета («костный возраст»), срокам вторичной дентитации (сроки прорезывания и смены молочных зубов на постоянные), изменению пропорций телосложения, степени развития вторичных половых признаков, сроку наступления первой менструации у девочек. Для этого используют таблицы, в которых представлены средние значения показателей биологического развития мальчиков и девочек по возрастам. Пользуясь этими таблицами и сравнивая данные ребенка со средними возрастными показателями, определяют соответствие биологического возраста календарному (паспортному), опережение или отставание от него. При этом учитывают изменение информативности показателей биологического возраста в зависимости от возраста ребенка.
   В возрасте до 1 года наиболее информативными показателями являются длина тела, прибавка длины тела за последний год, а также «костный возраст» (сроки появления ядер окостенения скелета верхних и нижних конечностей).
   В раннем, дошкольном и младшем школьном возрастах ведущими показателями биологического развития являются: длина тела, погодовые прибавки, количество постоянных зубов на верхней и нижней челюсти суммарно («зубной возраст»). В качестве дополнительных показателей в дошкольном возрасте могут быть использованы: изменения в пропорциях телосложения (отношение окружности головы к длине тела, «Филиппинский тест»).
   В среднем школьном возрасте ведущими показателями являются длина тела, прибавка длины тела, количество постоянных зубов, в старшем школьном возрасте – прибавка длины тела и степень развития вторичных половых признаков, возраст наступления менструаций у девочек.
   При определении количества постоянных зубов учитываются зубы всех степеней прорезывания – от четкого появления режущего края или жевательной поверхности над десной до полного сформировавшегося зуба.
   При проведении «Филиппинского теста» правая рука ребенка при вертикальном положении головы кладется поперек середины темени, пальцы руки при этом вытянуты в направлении левого уха, рука и кисть плотно прилегают к голове.
   «Филиппинский тест» считается положительным, если кончики пальцев достигают верхнего края ушной раковины.
   Отношение окружности головы к длине тела: коэффициент ОГ/ДТ × 100% – определяется как частное от деления величины окружности головы на длину тела, выраженное в процентах.
   Для установления степени полового развития определяется: у девочек – развитие волос в подмышечной области (Axillaris-Ax), развитие волос на лобке (Pubis-P), развитие молочных желез (Mammae-Ma), время появления первой менструации (Menarche-Me); у мальчиков – развитие волос в подмышечной области, развитие волос на лобке, мутация голоса (Vocalis-V), оволосение лица (Facialis-F), развитие кадыка (Larings-L).
   На втором этапе определяют морфофункциональное состояние по показателям массы тела, окружности груди в дыхательной паузе, мышечной силе кистей рук и жизненной емкости легких (ЖЕЛ). В качестве дополнительного критерия для дифференциации превышения массы тела и окружности грудной клетки возрастно-половых норм за счет жироотложения или развития мускулатуры используется измерение толщины кожно-жировых складок. Для определения морфофункционального состояния организма используют шкалы регрессии – для оценки массы тела и окружности грудной клетки, центильные шкалы – для оценки ЖЕЛ и мышечной силы рук и таблицы толщины кожно-жировых складок.
   Сначала учитывается соответствие массы тела и окружности груди длине тела. Для этого по шкале регрессии находят показатель длины тела обследуемого и соответствующие ему показатели массы тела и окружности грудной клетки. Затем вычисляют разность между фактическими и должными показателями массы тела и окружности грудной клетки. Степень повышения и снижения фактического показателя выражают в величине сигмального отклонения, для чего полученную разницу делят на соответствующую сигму регрессии.
   Функциональные показатели (ЖЕЛ, мышечная сила рук) оцениваются сопоставлением их с центильной шкалой для данной возрастно-половой группы.
   Средними считаются показатели, находящиеся в диапазоне от 25 до 75 центиля, ниже среднего – показатели, чьи значения ниже 25 центиля, выше среднего – выше 75 центиля.
   Морфофункциональное состояние может определяться как гармоничное, дисгармоничное и резко дисгармоническое.
   Гармоничным, нормальным следует считать состояние, когда масса тела и окружность грудной клетки отличаются от должных в пределах одной частной сигмы регрессии (± 1 ***R= сигма), а функциональные показатели находятся в пределах 25—75 центилей или превышают их. К гармонично развитым должны быть отнесены индивидуумы, у которых масса тела и окружность грудной клетки превышают должные более чем на 1 **** R за счет развития мускулатуры: толщина ни одной из кожно-жировых складок не превышает средних показателей; функциональные показатели в пределах 25—75 центилей или выше.
   Дисгармоничным считается морфофункциональное состояние, когда масса тела и окружность грудной клетки менее должных на 1,1—2 ***** R и более должных на 1,1—2 **** R за счет жироотложения (толщина кожно-жировых складок превышает средние показатели); функциональные показатели менее 25 центиля.
   Резко дисгармоничным считается морфофункциональное состояние, когда масса тела и окружность грудной клетки менее должных на 2,1 ***** R и более должных на 2,1 **** R за счет жироотложения (толщина кожно-жировых складок превышает средние показатели); функциональные показатели менее 25 центиля.
   Таким образом, при оценке физического развития по комплексной схеме общее заключение содержит вывод о соответствии физического развития возрасту и его гармоничности.
   ЛЕКЦИЯ № 15. Здоровый образ жизни и вопросы личной гигиеныwww
   В системе мероприятий по формированию и обеспечению здорового образа жизни в современных условиях большое значение приобретает личная гигиена каждого человека. Личная гигиена является частью общей гигиены. Если общая гигиена направлена на укрепление здоровья всего населения или здоровье популяции, то личная гигиена направлена на укрепление индивидуального здоровья. Однако личная гигиена имеет и общественное значение. Несоблюдение требований личной гигиены в повседневной жизни может оказывать неблагоприятное влияние и на здоровье окружающих (пассивное курение, распространение инфекционных заболеваний и гельминтозов и т. д.).
   В сферу личной гигиены входят гигиена тела и полости рта, физическая культура, закаливание, предупреждение вредных привычек, гигиена половой жизни, отдыха и сна, индивидуального питания, гигиена умственного труда, гигиена одежды и обуви и др.

Гигиена полости рта

   Поддержание чистоты тела обеспечивает нормальное функционирование кожи.
   Через кожу путем излучения, испарения и проведения организм теряет более 80 % образующегося тепла, что необходимо для поддержания теплового равновесия. В условиях теплового комфорта через кожу выделяется 10—20 г пота в час, при тяжелой нагрузке и в дискомфортных условиях до 300—500 г и более. Ежесуточно кожа взрослого человека выделяет до 15—40 г кожного сала, в состав которого входят различные жирные кислоты, белки и другие соединения, происходит слущивание до 15 г ороговевших пластинок. Через кожу выделяется значительное количество летучих веществ, входящих в группу антропогазов и антропотоксинов, органических и неорганических солей, ферментов. Все это может способствовать размножению на теле бактерий и грибов. На коже рук находится более 90 % общего количества микроорганизмов, обсеменяющих поверхность тела.
   Кожа человека выполняет барьерную роль, участвует в газообмене, участвует в обеспечении организма эргокальцеферолом.
   Чистая кожа обладает бактерицидными свойствами – количество микробных тел, нанесенных на чистую кожу, в течение 2 ч снижается более чем на 80 %. Бактерицидность чистой кожи в 20 раз больше, чем немытой. Поэтому в санитарных целях необходимо мытье рук и лица утром и перед сном, вечером обмывание ног и не реже 1 раза в неделю обмывание всего тела. Необходимо также обмывание наружных половых органов, которое является обязательным элементом ежедневной личной гигиены женщины. Совершенно обязательно мытье рук перед едой.
   Волосы рекомендуется мыть примерно 1 раз в неделю при сухой коже и 1 раз в 3—4 дня – при жирной с использованием моющих средств.
   Мыла представляют собой разновидность водорастворимых солей высших жирных кислот, содержащих поверхностно-активные вещества. Их получают путем нейтрализации высших жирных кислот или омыления нейтральных жиров едкими щелочами (безводные натриевые мыла – твердые, калиевые – жидкие). Степень растворимости мыла в воде зависит от того, солями каких жирных кислот оно является. Соли ненасыщенных жирных кислот обладают большей растворимостью, чем насыщенные.
   Различают туалетные, хозяйственные, медицинские и технические мыла.
   Контактируя с эпидермисом, содержащаяся в мыле щелочь переводит белковую часть эпидермиса в легкорастворимые щелочные альбуминаты, удаляемые при смывании. Поэтому частое мытье с мылом сухой кожи действует на нее неблагоприятно, усугубляя ее сухость и зуд, образование перхоти, выпадение волос.
   Количество свободной щелочи в мылах регламентируется, и в туалетных мылах не должно превышать 0,05 %. Добавление к мылу ланолина («Детское», «Косметическое») смягчает раздражающее действие щелочи. Восстановлению обладающей бактерицидным действием кислой реакции кожи способствует ополаскивание составами, содержащими уксусную кислоту.
   В процессе производства в туалетные мыла в зависимости от их назначения и товарной группы входят различные красители, отдушки, лечебно-профилактические и дезинфицирующие средства. Горячие мыльные растворы (40—60 °С) удаляют с инфицированной поверхности 80—90 % микрофлоры.
   В последние десятилетия наряду с мылами для стирки белья и уборки помещений широко используются синтетические моющие средства (СМС), представляющие собой комплексные химические соединения, главными компонентами которых являются поверхностно-активные вещества (ПАВ). Кроме них, в состав СМС (в виде порошков, паст, жидкостей) входят отбеливатели, парфюмерные отдушки, кальцинированная сода и другие химические вещества. Так, например, в состав СМС входят 20 % смеси моющих веществ (алкилбензолсульфонаты, алкилсульфонаты), 40 % натрия триполифосфата, 26 % натрия сульфата, 2 % моноалкиламидов, карбоксиметилцеллюлозы, отбеливатели, парфюмерные отдушки.
   Высокими бактериостатическими и бактерицидными свойствами обладают входящие в состав СМС катионактивные вещества – дегмин, диоцил, пирогем и др. Бактерицидная активность сульфонолов и других анионоактивных ПАВ ниже, чем катионактивных, и для дезинфекции их обычно применяют в смеси с другими дезинфектантами. В концентрациях более 1 % СМС могут оказывать раздражающее и аллергенное действие. Не следует применять СМС для смягчения воды.
   Основной способ гигиенического ухода за полостью рта – ежедневная двукратная чистка зубов. Она необходима для своевременного удаления зубного налета, замедляет процесс образования зубного камня, устраняет неприятный запах изо рта, уменьшает количество микроорганизмов в полости рта. Для чистки зубов используют зубные порошки и пасты. Главными компонентами зубных порошков являются очищенный мел и различные добавки и отдушки. Очищающие и массирующие свойства порошков высоки, однако их недостатком в сравнении с пастами является абразивное действие на эмаль зубов.
   Достоинством паст, содержащих значительно меньше мела, чем порошки, является возможность создания разнообразных композиций состава. Существуют гигиенические и лечебно-профилактические зубные пасты. В состав лечебно-профилактических зубных паст вводятся различные биологически активные вещества (витамины, растительные экстракты, минеральные соли, микроэлементы), оказывающие противовоспалительное, фторзамещающее действие.
   Процесс чистки зубов должен продолжаться не менее 3—4 мин и включать 300—500 парных движений вдоль (преимущественно) и поперек.
   Для оценки чистоты зубов и интенсивности налета на них рекомендуется использовать так называемый гигиенический индекс, который определяется следующим образом. С помощью йодисто-калиевого раствора (КJ – 2 г, йод кристаллический – 1 г, Н2О – 4 мл), наносимого на поверхность шести нижних фронтальных зубов, оценивается интенсивность их окраски в баллах: отсутствие окраски – 1 балл, сильная коричневая окраска – 5 баллов. Индекс вычисляется по формуле:
   Кср = Кп / п,
   где Кп —сумма баллов;
   п – количество зубов.
   Если Кср меньше 1,5 балла – оценка хорошая, от 2,6 до 3,4 балла – плохая, более 3,5 – очень плохая.

Физическая культура

   Одним из важнейших элементов личной гигиены и здорового образа жизни является физическая культура. Простейшими видами физической культуры должны заниматься все здоровые взрослые и дети. Для людей, страдающих хроническими заболеваниями, физические упражнения должны быть адаптированными. Однако физическая нагрузка должна быть индивидуализированной и исходить из реального состояния здоровья, возраста и подготовленности конкретного человека.
   Для решения вопроса о степени функциональной подготовленности к физическим упражнениям и контроля для их выполнения предложены различные тесты. Одним из них является 12-минутный тест спортивного американского медика К. Купера. Он основан на том, что между пройденной дистанцией (км) и потреблением кислорода (мл/кг мин) имеется связь, отражающую функциональную подготовленность человека. Так, в возрасте 30—39 лет плохой считается подготовленность, при которой потребление кислорода составляет лишь 25 мл/(кг мин), удовлетворительной – от 30 до 40, отличной – 38 мл/(кг мин) и более. В возрасте от 17 до 52 лет дистанцией при преодолении ее в течение 12 мин, и потреблением кислорода характерна следующая зависимость.

   Таблица 5.

   Исходя из этой зависимости, Купер предложил (таблица 5) критерии, основанные на определении длины дистанции, которую испытуемый способен пройти или пробежать за 12 мин, сохраняя при этом хорошие общее самочувствие и не испытывая сильной одышки, учащения сердцебиения и других неприятных ощущений.
   Академик А. Амосов в качестве теста предлагал оценивать изменение исходной частоты пульса после 20 приседаний в медленном темпе, с вытянутыми вперед руками и широко разведенными коленями. Если пульс учащается не более чем на 25 % от исходного, то состояние органов кровообращения хорошее, на 20—25 % – удовлетворительное, на 75 % и более – неудовлетворительное.
   Еще один доспупный тест – изменение частоты пульса и общего самочувствия при обычном подъеме пешком на 4-й этаж. Состояние оценивается как хорошее, если частота пульса не превышает 100—120 в 1 минуту, дыхание свободное, легкое, отсутствуют неприятные ощущения, одышка. Легкая одышка характеризует состояние как удовлетворительное. Если уже на 3-м этаже выражена одышка, частота пульса более 140 в 1 минуту, отмечается слабость, то функциональное состояние оценивается как неудовлетворительное.
   Оценивать самочувствие в процессе физических упражнений можно по частоте пульса, измеряемой через 1—2 мин после завершения упражнений. Частота пульса не должна выходить на пределы так называемой контрольной зоны – в пределах 75—85 % от контрольной цифры, получаемой путем вычитания числа лет от цифры 220. Например, в возрасте 40 лет контрольная цифра равна 220 – 40 = 180; 75 % от 180 составляет 135, 85 % – 153 (в возрасте 50 лет соответственно 127,5 и 144,5). Физическая нагрузка не превышает функциональных возможностей, если фактическая частота пульса находятся в пределах, характерных для данного возраста.
   Самым древним, простым и доступным видом физической активности, не имеющим противопоказаний практически для подавляющего большинства людей, является ходьба. Энергозатраты при ходьбе со скоростью 3 км/ч составляют 195 ккал/ч, при скорости 5 км/час – 390 ккал/ч. В течение суток каждый взрослый человек может пройти не менее 8—10 тысяч шагов, что при темпе 90 шагов в 1 минуту составляет примерно 1,5—2 ч ходьбы, не менее 75 %, которой должно быть на свежем воздухе. Для неподготовленных начинающих рекомендуется (по Куперу) программа тренирующей ходьбы с постепенным увеличением ее дистанции и времени (на 1-й неделе примерно 1,5 км в течение 15 мин, на 6-й – около 2,5 км за 20 мин).
   Вторым важнейшим элементом физической культуры является утренняя гигиеническая гимнастика (УГГ). В отличие от специальных видов гимнастики упражнения УГГ представляют собой комплекс сравнительно простых, корригирующих, общеразвивающих и силовых движений, воздействующих на основные группы мышц тела, без большого физического напряжения. УГГ рекомендуется проводить после сна, перед водными процедурами, желательно на свежем воздухе. Энергозатраты УГГ невелики и составляют 80—90 ккал, однако значение ее огромно, она способствует эффективной физической и умственной деятельности в течение всего рабочего дня.
   Закаливание
   В узком смысле слова под закаливанием понимают повышение устойчивости организма к воздействию колебаний температуры воздуха и воды, влажности воздуха, атмосферного давления, солнечного излучения и других физических факторов окружающей среды.
   Закаливание повышает адаптационные возможности организма не только к низким и другим климатическим факторам, но и к физико-химическим, биологическим, психологическим неблагоприятным воздействиям, снижает восприимчивость к респираторным и другим инфекционным заболеваниям, повышает работоспособность, способствует формированию положительных психофизиологических эмоций. Роль закаливания особенно велика для детей и людей в условиях гиподинамии.
   При проведении закаливающих процедур необходимо учитывать их основные принципы:
   1) постепенность (постепенное увеличение интенсивности и продолжительности воздействия закаливающего фактора);
   2) систематичность (выполнение закаливающих процедур не эпизодически, а регулярно, по определенной схеме);
   3) комплексность (сочетание воздействия нескольких факторов, например воздуха и воды);
   4) индивидуализированный режим (характер, интенсивность и режим закаливания с учетом индивидуальных особенностей человека – его возраста, пола, состояния здоровья и т. д.).
   Закаливание можно начинать и проводить в любое время года. Основными закаливающими факторами являются вода, воздух и солнечное излучение.
   Закаливание воздухом
   Наиболее распространенной формой закаливания воздухом является аэротерапия (воздушные ванны). Различают теплые (температура от 30 до 25 °С), прохладные (20—14 °С) и холодные (менее 14 °С) воздушные ванны. При оценке температурного режима следует учитывать комплексный характер микроклимата и ориентироваться на эффективно-эквивалентные температуры и влажности воздуха, скорости его движения и уровня излучения. Для большей эффективности ванны следует принимать в максимально обнаженном виде в тени, на специальных площадках (аэрариях), не загрязненных атмосферными выбросами. Допустимой и эффективной формой закаливания верхних дыхательных путей является сон зимой в помещении с открытой форточкой.
   Закаливание воздухом целесообразно сочетать с физическими упражнениями.
   Различают 4 степени холодового воздействия воздуха – от слабо тренирующего (3—18 ккал/м2)до максимальнотренирующего закаливающего (6—72 ккал/м2 поверхности тела).
   Закаливание водой является весьма мощным, эффективным и разнообразным по форме видом закаливания. Закаливание водой основано на высокой теплоотдаче тела человека, так как вода обладает теплоемкостью, значительно превышающей (в 10—20 раз) теплоемкость воздуха с той же температурой.
   Для закаливания могут применяться ванны, купания, души, обливания, обтирания, ножные ванны и другие водные процедуры. По температурному режиму различают следующие виды процедур: холодные (менее 20 °С), прохладные (20—30 °С), индифферентные (34—36 °С), теплые) 37—39 °С), горячие (свыше 40 °С).
   Весьма полезен обычный и – особенно – контрастный душ. Его целесообразно проводить в попеременном, постепенно меняющемся температурном режиме (от 35—20 °С до 45—10 °С), продолжительностью 0,5—2 мин.
   Обливание можно использовать в качестве самостоятельной закаливающей процедуры (снижая температуру от 30 °С до 15 °С) с обязательным последующим растиранием тела, что усиливает тренирующее действие на сосуды.

Гигиена одежды

   Важной составной частью личной гигиены является гигиена одежды.
   По выражению Ф. Ф. Эрисмана, одежда является своеобразным кольцом защиты от неблагоприятных природных условий, механических воздействий, предохраняет поверхность тела от загрязнения, избыточного солнечного излучения, других неблагоприятных факторов бытовой и производственной среды.
   В настоящее время в понятие пакета одежды входят следующие основные компоненты: белье (1-й слой), костюмы и платья (2-й слой), верхняя одежда (3-й слой).
   По назначению и характеру использования различают одежду бытовую, профессиональную (спецодежду), спортивную, военную, больничную, обрядовую и т. д.
   Повседневная одежда должна соответствовать следующим основным гигиеническим требованиям:
   1) обеспечивать оптимальный пододежный микроклимат и способствовать тепловому комфорту;
   2) не затруднять дыхание, кровообращение и движения, не смещать и не сдавливать внутренние органы, не нарушать функций опорно-двигательного аппарата;
   3) быть достаточно прочной, легко очищаться от внешних и внутренних загрязнений;
   4) не содержать выделяющихся во внешнюю среду токсических химических примесей, не обладать неблагоприятно влияющими на кожу и человеческий организм в целом физическими и химическими свойствами;
   5) иметь сравнительно небольшую массу (до 8—10 % массы тела человека).
   Важнейшим показателем качества одежды и ее гигиенических свойств является пододежный микроклимат. При температуре окружающей среды 18—22 °С рекомендуются следующие параметры пододежного микроклимата: температура воздуха – 32,5—34,5 °С, относительная влажность – 55—60 %.
   Гигиенические свойства одежды зависят от сочетания ряда факторов. Главные из них – вид ткани, характер ее выделки, покрой одежды. Для изготовления ткани используются различные волокна – натуральные, химические искусственные и синтетические. Натуральные волокна могут быть органическими (растительными, животными) и неорганическими. К растительным (целлюлозным) органическим волокнам относятся хлопок, лен, сизаль, джут, пенька и прочие, к органическим волокнам животного происхождения (белковым) – шерсть и шелк. Для изготовления некоторых видов спецодежды могут использоваться неорганические (минеральные) волокна, например асбест.
   В последние годы все большее значение приобретают химические волокна, которые также подразделяют на органические и неорганические. Основную группу волокон химического происхождения составляют органические. Они могут быть искусственными и синтетическими. К искусственным волокнам относятся вискозные, ацетатные, триацетатные, казеиновые и т. д. Их получают при химической переработке целлюлозы и других исходных материалов природного происхождения.
   Синтетические волокна получают путем химического синтеза из нефти, угля, газа и другого органического сырья. По происхождению и химической структуре выделяют гетероцидные и карбоцидные синтетические волокна. К гетероцидным относятся полиамидные (капрон, нейлон, перлон, ксилон и др.), полиэфирные (лавсан, терилен, дакрон), полиуретановые, к карбицидным – поливинилхлоридные (хлорин, винол), поливинилспиртовые (винилон, куралон), полиакрилнитрильные (нитрон, орлон).
   Гигиенические достоинства или недостатки тех или иных тканей прежде всего зависят от физико-химических свойств исходных волокон. Наиболее важное гигиеническое значение из этих свойств имеют воздухо-, паропроницаемость, влагоемкость, гигроскопичность, теплопроводность.
   Воздухопроницаемость характеризует способность ткани пропускать через свои поры воздух, от чего зависят вентиляция пододежного пространства, конвекционная отдача тепла с поверхности тела. Воздухопроницаемость ткани зависит от ее структуры, пористости, толщины и степени увлажнения. Воздухопроницаемость тесно связана со способностью ткани поглощать воду. Чем быстрее заполняются влагой поры ткани, тем менее воздухопроводной она становится. При определении степени воздухопроницаемости стандартным считается давление 49 Па (5 мм вод. ст.).
   Воздухопроницаемость тканей бытового назначения колеблется от 2 до 60 000 л/м2 при давлении 1 мм вод. ст. По степени воздухопроницаемости различают ткани ветрозащитные (воздухопроницаемость 3,57—25 л/м2) с малой, средней, высокой и очень высокой воздухопроницаемостью (более 1250,1 л/м2).
   Паропроницаемость характеризует способность ткани пропускать через поры водяные пары. Абсолютная паропроницаемость характеризуется количеством водяных паров (мг), проходящих в течение 1 ч через 2 см 2 ткани при температуре 20 °С и относительной влажности 60 %. Относительная паропроницаемость – процентное отношение количества водяных паров, прошедших через ткань, к количеству воды, испарившейся из открытого сосуда. Для различных тканей этот показатель колебания от 15 до 60 %.
   Испарение пота с поверхности тела – один из главных способов теплоотдачи. В условиях теплового комфорта с поверхности кожи в течение 1 ч испаряется 40—50 г влаги. Выделение пота более 150 г/ч сопряжено с тепловым дискомфортом. Такой дискомфорт возникает и при давлении пара в пододежном пространстве свыше 2 Гпа. Поэтому хорошая паропроницаемость ткани является одним из факторов обеспечения теплового комфорта.
   Удаление влаги через одежду возможно путем диффузии водяных паров, испарения с поверхности увлажненной одежды либо испарения конденсата пота из слоев этой одежды. Наиболее предпочтительным путем удаления влаги является диффузия водяных паров (другие пути увеличивают теплопроводность, снижают воздухопроницаемость, уменьшают пористость).
   Одним из наиболее важных в гигиеническом отношении свойств ткани является ее гигроскопичность, характеризующая способность волокон ткани поглощать водяные пары их воздуха и с поверхности тела и удерживать их при определенных условиях. Наибольшей гигроскопичностью обладают шерстяные ткани (20 % и более), что позволяет им сохранить высокие теплозащитные свойства даже при увлажнении. Минимальной гигроскопичностью обладают синтетические ткани. Важной характеристикой тканей (особенно используемой для изготовления белья, рубашечно-платьевых изделий, полотенец) является их способность впитывать капельно-жидкую влагу. Оценивают эту способность по капиллярности ткани. Наиболее высокая капиллярность у хлопковых и льняных тканей (110—120 мм/ч и более).
   В обычных температурно-влажностных условиях хлопчатобумажные ткани удерживают 7—9 %, льняные – 9—11 %, шерстяные – 12—16 %, ацетатные – 4—5 %, вискозные – 11—13 %, капроновые – 2—4 %, лавсановые – 1 %, хлориновые – менее 0,1 % влаги.
   Теплозащитные свойства ткани определяются теплопроводностью, которая зависит от ее пористости, толщины, характера переплетения волокон и т. д. Теплопроводность тканей характеризует тепловое сопротивление, для определения которого необходимо измерить величину теплового потока и температуру кожи. Плотность теплового покрова определяется количеством тепла, теряемого с единицы поверхности тела за единицу времени, конвекцией и радиацией при градиенте температуры на внешней и внутренней поверхности ткани, равном 1 °С, и выражается в Вт/м2.
   В качестве единицы теплозащитной способности ткани (способность снижать плотность теплового потока) принята величина сlо (от англ. сlothes – «одежда»), которая характеризует теплоизоляцию комнатной одежды, равную 0,18 °С м/2 ч/ккал. Одна единица сlо обеспечивает состояние теплового комфорта, если теплообразование спокойно сидящего человека составляет примерно 50 ккал/м2 ч, а окружающий микроклимат характеризуется температурой воздуха в 21 °С, относительной влажностью 50 %, скоростью движения воздуха 0,1 м/с.
   Влажная ткань обладает высокой теплоемкостью и потому значительно быстрее поглощает тепло от тела, способствуя его охлаждению и переохлаждению.
   Помимо перечисленных, важное гигиеническое значение имеют такие свойства ткани, как способность пропускать ультрафиолетовое излучение, отражать видимое излучение, время испарения влаги с поверхности тела. Степень прозрачности синтетических тканей для УФ-излучения составляет 70 %, для других тканей эта величина значительно меньше (0,1—0,2 %).
   Основным гигиеническим достоинством тканей из натуральных волокон является их высокая гигроскопичность и хорошая воздухопроводность. Именно поэтому хлопчатобумажные и льняные ткани используют для изготовления белья и бельевых изделий. Особенно велики гигиенические достоинства шерстяных тканей – их пористость составляет 75—85 %, у них высокая гигроскопичность.
   Вискозные, ацетатные и триацетатные ткани, получаемые путем химической обработки древесной целлюлозы, характеризуются высокой способностью сорбировать на своей поверхности водяные пары, они обладают высокой влагопоглощаемостью. Однако для вискозных тканей характерна длительная испаряемость, что вызывает значительные теплопотери с поверхности кожи и может привести к переохлаждению.
   Ацетатные ткани по своим свойствам близки к вискозным. Однако их гигроскопичность и влагоемкость значительно ниже, чем у вискозных, при их носке образуются электростатические заряды.
   Особое внимание гигиенистов в последние годы привлекают синтетические ткани. В настоящее время более 50 % видов одежды изготавливаются с их применением. Эти ткани имеют ряд достоинств: они имеют хорошую механическую прочность, устойчивы к истиранию, воздействию химических и биологических факторов, обладают антибактериальными свойствами, эластичностью и т. д. К недостаткам следует отнести низкую гигроскопичность и, как следствие, – пот не впитывается волокнами, а скапливается в воздушных порах, ухудшая воздухообмен и теплозащитные свойства ткани. При высокой температуре окружающей среды создаются условия для перегрева организма, а при низкой – для переохлаждения. Синтетические ткани способности поглощать воду в 20—30 раз меньше, чем шерстяные. Чем выше влагопроницаемость ткани, тем хуже ее теплозащитные свойства. Кроме того, синтетические ткани способны удерживать неприятные запахи, хуже отстирываются, чем натуральные. Возможны деструкция компонентов волокон вследствие их химической нестабильности и миграция соединений хлора и других веществ в окружающую среду и пододежное пространство. Миграция, например, формальдегидсодержащих веществ продолжается в течение нескольких месяцев и способна создавать концентрацию, в несколько раз превышающую ПДК для атмосферного воздуха. Это может привести к кожно-резорбтивному, раздражающему и аллергенному воздействию.
   Электростатическое напряжение при ношении одежды из синтетических тканей может быть до 4—5 кВ/см при норме не более 250—300 В/см. Не следует использовать синтетические ткани для белья новорожденных, детей ясельного, дошкольного и младшего школьного возраста. При изготовлении ползунков и колготок допускается добавление не боле 20 % синтетических и ацетатных волокон.
   Основные гигиенические требования к тканям различного происхождения представлены в таблице 6.

   Таблица 6. Гигиенические требования к различным видам тканей.

   Гигиенические требования к различным компонентам пакета одежды
   Компоненты пакета одежды выполняют различные функции, поэтому и различны гигиенические требования к тканям, из которых они изготавливают.
   Первый слой пакета одежды – нательное белье. Основное физиолого-гигиеническое назначение этого слоя – поглощение пота и других выделений кожи, хорошая вентиляция между кожей и бельем. Поэтому ткани, из которых изготавливается белье, должны обладать высокой гигроскопичностью, быть гидрофильными, воздухо– и паропроницаемыми. Лучше всего этим требованиям отвечают натуральные ткани. Второй слой одежды (костюмы, платья) должен обеспечить создание оптимального пододежного микроклимата, способствовать удалению испарений и воздуха из белья и отвечать характеру выполняемой работы. В гигиеническом отношении важнейшим требованием ко второму слою одежды является его высокая паропроницаемость. Для изготовления костюмов и других видов второго слоя можно использовать как натуральные ткани, так и синтетические. Наиболее целесообразны смешанные ткани (например, лавсан в смеси с шерстью), обладающие улучшенными сорбционными свойствами, пониженной электризуемостью, высокой паропроницаемостью, низкой теплопроводностью, сочетающимися с хорошими эксплуатационными качествами и внешним видом.
   Основное функциональное назначение третьего слоя (верхней одежды) – защита от холода, ветра, неблагоприятных погодных условий. Ткани для этого слоя должны обладать низкой теплопроводностью, большой ветростойкостью, влагонепроницаемостью (низкой гигроскопичностью), прочностью на истирание. Этим требованиям отвечают натуральные или синтетические меха. Целесообразно использовать комбинации различных тканей (например, сочетать верхний ветро– и влагозащитный слой из синтетической ткани с теплоизоляционной прокладкой из смеси искусственного и натурального меха, шерсти). Рекомендуемые нормативы некоторых показателей материалов для различных слоев одежды представлены в таблице №.7

   Таблица 7. Рекомендуемые гигиенические параметры материалов для различных слоев одежды.

   Для изготовления лечебного трикотажного белья ранее широко применялось хлориновое штапельное волокно. Хлориновое белье обладает хорошими теплозащитными свойствами и благодаря так называемому трибоэлектрическому эффекту (накопление электростатического заряда на поверхности материала в результате его трения о кожу) благотворно влияет на больных ревматизмом, радикулитом. Это белье обладает высокой гигроскопичностью и в то же время воздухо– и паропроницаемо. Недостаток хлоринового белья – его неустойчивость к стирке при высокой температуре. В этом отношении преимущество имеет лечебное белье из поливинилхлорида.
   Разработано и находит применение антимикробное белье. В качестве бактерицидных средств для антимикробного белья могут применяться препараты нитрофуранового ряда.
   Дополнительные требования предъявляются к детской одежде. Вследствие менее совершенного механизма терморегуляции, значительно большего удельного отношения величины поверхности тела к единице его массы у детей, чем у взрослых, более интенсивного периферического кровообращения (большая масса крови протекает в периферических капиллярах) они легче охлаждаются в холодное время года и перегреваются в летнее. Поэтому детская одежда должна обладать более высокими теплоизоляционными свойствами зимой и способствовать теплоотдаче летом. При этом важно, чтобы одежда не была громоздкой, не препятствовала движениям, не вызывала нарушений в костно-мышечных тканях и связках. В детской одежде должно быть минимальное количество рубцов, швов, покрой должен быть свободным.
   Различия в природно-климатических условиях в России определяют и гигиенические требования к одежде. Выделено 16 зон с различными требованиями к теплозащитным свойствам одежды. Так, например, для зоны смешанных и широколиственных лесов средней полосы европейской части России комфортное состояние в летнее время обеспечивает одежда теплозащитой 0,1—1,5 сlо, в зимнее – 3—5 сlо в зависимости от характера и тяжести работы.

Гигиена обуви

   По назначению выделяют обувь бытовую, спортивную, специальную рабочую, детскую, военную, лечебную и т. д.
   Обувь должна отвечать следующим гигиеническим принципам:
   1) обладать низкой теплопроводностью, обеспечивать оптимальный микроклимат обувного пространства, его вентиляцию;
   2) быть удобной в использовании, не нарушать кровоснабжение, рост и формирование костно-мышечных элементов стопы, не затруднять свободу движений при ходьбе, занятиях физкультурой и трудовых процессов, обеспечивать защиту стоп от неблагоприятных физических, химических и биологических воздействий;
   3) не выделять в обувное пространство химические вещества в концентрациях, способных в реальных условиях эксплуатации оказывать неблагоприятное воздействие (кожно-раздражающее, резорбтивное, аллергенное и т. д.) на кожу стопы и организм в целом;
   4) отвечать возрастным и другим физиологическим особенностям организма;
   5) легко чиститься и высушиваться, продолжительное время сохранять первоначальную конфигурацию и гигиенические свойства.
   Гигиенические свойства обуви зависят от материала, из которого она изготовлена, соответствия размеров и конфигурации стопы, конструктивных особенностей и эксплуатационных качеств. Для изготовления обуви используют различные натуральные и искусственные материалы. Показатели, по которым судят о достоинствах или недостатках того или иного материала, совпадают с теми, которые характеризуют гигиенические свойства тканей одежды – теплопроводность, влагопоглощаемость, воздухо– и паропроницаемость.
   Хорошими гигиеническими свойствами обладают материалы из натуральной кожи. Они эластичны, умеренно воздухопрницаемы, имеют низкую теплопроводность, не выделяют в обувное пространство вредные химические вещества. Это очень важно, так как даже при умеренной физической нагрузке стопа взрослого человека может выделять от 2 до 5 г пота в 1 ч. Стопы наиболее подвержены охлаждению. Оптимальной для сохранения баланса между теплообразованием и теплоотдачей внутри обуви считается температура 18—22 °С, относительная влажность воздуха – 40—60 %.

СПИСОК ЛИТЕРАТУРЫ

   1. Руководство по коммунальной гигиене. Том I / Под редакцией профессора В. А. Рязанова. М.: Медгиз. 1961.
   2. Марзеев А. Н., Жаботинский В. М. Коммунальная гигиена. М.: Медгиз. 1979.
   3. Пивоваров Ю. П. Гигиена и экология человека: Курс лекций. М.: ВУНМЦ МЗ РФ. 1999.
   4. СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод».
   5. СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».
   6. СанПиН 2.1.5.1059-01 «Гигиенические требования к охране подземных вод от загрязнения».
   7. СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества».
   8. Методы контроля и управления санитарно-эпидемиологическим благополучием детей и подростков: Руководство для студентов медико-профилактических факультетов высших медицинских учебных заведений / Н. Д. Бобрищева-Пушкина, Т. Ю. Вишневская, В. Р. Кучма и др. / Под редакцией проф. В. Р. Кучмы М.: ВУНМЦ МЗ РФ, 1999. 606 с.
   9. Методы исследования физического развития детей и подростков в популяционном мониторинге: Руководство для врачей / Авт.: А. А. Баранов, В. Р. Кучма, Ю. А, Ямпольская и др. // Под ред. академика РАМН А. А. Баранова и проф. В. Р. Кучмы. М.: Союз педиатров России, 1999. 226 с.
   10. В. Р. Кучма. Физическое развитие, состояние здоровья и образ жизни детей Приполярья / В. Р. Кучма, Б. М. Раенгулов, Н. А. Скоблина. М.: НЦЗД РАМН, 1999. 200 с.
   11. В. Р. Кучма. Руководство по гигиене и охране здоровья школьников / В. Р. Кучма, Г. Н. Сердюковская, А. К. Демин. М.: Рос. Ассоциация общественного здоровья, 2000. 152 с.
   12. Оценка физического развития и состояния здоровья детей и подростков, изучение медико-социальных причин формирования отклонений в здоровье: Методические рекомендации ГК СЭН РФ № 01-19/31-17 от 17.03.1996 г. М.: ГК СЭН, 1996. 55 с.
   13. СН 2.2.4/2.1.8.5622-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».
   14. СН 2.2.4/2.1.8.566-96 «Производственная вибрация, вибрация в помещениях жилых и общественных зданий».
   15. Г. И. Румянцев. Гигиена. М., 2000.
   16. Ю. П. Пивоваров. Гигиена и экология человека. М., 1999.
   17. Ю. П. Пивоваров. Руководство к лабораторным и практическим занятиям по гигиене и основам экологии человека. М., 1998.